
How Far Would You Go?
Comparing Urban and Spatial Access in 10 Global Cities

Sahil Loomba and Matthew Garrod
Department of Mathematics, Imperial College London

(Dated: May 25, 2019)

Cities permit people to access a diverse range of venues and attractions with relative ease. A
range of factors–spatial, behavioural and categorical–can determine how successfully they do so.
This work develops principled measures of urban and spatial access around these factors using
ideas from statistics, networks and topology. These measures are validated by using data on trip
check-ins from the location-based social network Foursquare, on 10 cities spread across the globe.
Correlation analysis reveals that people travel further for venue diversity, and for venue types they
have a high affinity for. Consequently, there is a trade-off between local venue diversity and global
venue popularity. This model-driven data analysis paves the way for future work on understanding
how to quantify the diversity of resources that individuals have access to within a city, and help city
planners to provide good urban access.

I. INTRODUCTION

More than half of the world’s population now live in
cities, and this number is only set to rise in years to
come. Construction of integrated transport, introduc-
tion of novel technologies, faster and farther movement
of diverse people within and between countries, mixing
of cultures, rising complexity of socio-economic interac-
tions, will all push us towards an era of global planning
culture. This realisation provides an interesting challenge
to urban planners, of how to best plan a city that works
for its people in this complex and dynamic urban envi-
ronment. Particularly, in terms of providing better access
to a diverse set of facilities–such as food, health, educa-
tion, entertainment, and mobility, amongst others–that
improve peoples overall standards and satisfaction of liv-
ing.

In this work we aim to define and assess the accessi-
bility of 10 different cities spread across the globe. We
hypothesise a city to be more accessible if it is possible
for people to have access to a diverse set of public venues,
that satisfy different dimensions of societal existence. Al-
though this is an intuitive hypothesis, we seek to prove
or disprove it, provide measurable statistics that can di-
agnose the accessibility of cities, and assist city-planners
to develop cities that people want to live in.

The rich Foursquare dataset allows us to obtain three
different classes of information:

Behavioural: This pertains to the trips that users
choose to make. For example, users may make trips
between venues of different categories, say between
“restaurants” and “metro stations”.

Categorical: This pertains to the distribution of differ-
ent venues across the city. We may be interested
in both the pure count and spatial distribution of
different categories and also how individuals move
between these different classes of venue.

Spatial: Data which contains information such as the
trip distance or the distribution of venue categories

within certain regions.
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FIG. 1: Schematic illustrating the different classes of
data which three statistics: (i) median trip distance, (ii)

local availability ai(R), and (iii) global access - node

connectivity β̂0, belong to. Each statistic covers two of
the different data classes.

Previous studies of data from Foursquare suggest that
human mobility patterns show some level of universal-
ity across different cities [1]. Consequently, testing for
correlations between behavioural, categorical and spatial
information should provide insight into both the accessi-
bility of different venue categories and of people’s pref-
erences for different venue categories. The Foursquare
dataset has rich temporal information on venue check-
ins across 10 cities, and the category of each venue. We
exclude temporal analysis from the present scope of our
study, and make use of venue coordinates, check-in and
category information only. A detailed data description is
provided in the appendix (V A).
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FIG. 2: Scatter Plots relating (a) median trip distance to local availability ai(R), (b) median trip distance to global

access connectivity β̂0, and (c) ai(R) with β̂0.

II. SPATIAL ACCESS STATISTICS

We consider the following spatially dependent mea-
sures of the accessibility of each city.

1. The mean, median and maximum trip distances ob-
tained by taking a sample of 5000 trips from each
dataset.

2. Let NTot(i, R) be the number of different venue cat-
egories within a radius R of venue i. Let NVis(i, R)
be the number of venue categories, within a radius
R, that users visit. Let k be the number of different
venue categories in the city of interest. We define
the local availability of venue i to be:

ai(R) =
NTot(i, R)

k
. (1)

This statistic is purely mechanistic or spatial, and
captures the availability of different venue cate-
gories within the vicinity of venue i. Now, in-
corporating trips undertaken by people, we con-

sider two more statistics: Ai(R) = NVis(i,R)
NTot(i,R) and

AGi (R) = NVis(i,R)
k , which we will refer to as the lo-

cal and global spatial access respectively. Note that
AGi (R) = Ai(R)ai(R). These represent the degree
to which users make use of the range of different
venue categories in their immediate vicinity, versus
in the entire city.

The first of these measures combines spatial and be-
havioural information, while the second, ai(R) contains
spatial and categorical information but no behavioural
information. Figure 1 shows the overlap of the median
trip distance and ai(R) in terms of the information they

include. Also shown is the overlap with the β̂0 statistic
defined in section III.

The full motivation and derivation of these measures
is described in the appendix (see section V B). In the
following analysis we will use values of the above statis-
tics estimated by sampling 100 random venues from each
city. We will fix R = 1km as this is representative of

the typical distance that an individual might walk from
a particular venue without resorting to public transport.
A more detailed investigation of the effect of varying R
on the metrics discussed above is beyond the scope of
this preliminary study.

III. URBAN ACCESS STATISTICS

A spatial-statistics view of venue interaction networks
can see graphs between nodes embedded in a Euclidean
2D space, corresponding to the physical space of venue in-
teractions. An alternative view is a category-based view,
wherein n venues are “generated” from k categories fol-
lowing a certain multinomial distribution π ∈ {0, 1}k.
Then, interaction edges Aij are generated between any
two venues from categories i and j, from a block or “affin-
ity”matrix Ψ such that aij ∼ Bernoulli(Ψij). Succinctly,
if zi ∈ [0, 1]k be the assignment vector where zij = 1 iff
venue i is in venue-category j, and Z ∈ [0, 1]n×k be the
assignment matrix for n venues, then

zi ∼ Multinomial(π)

Aij ∼ Bernoulli(ZΨZT )
(2)

This resembles the framework of stochastic block mod-
els, wherein categories are usually latent variables to be
inferred [2], although here we treat them as the given ob-
served venue-categories. It is easy to see the generated
network depends entirely on the distribution of venue-
categories π (“category information”), and the inter-
category affinities encoded by Ψ (“behavioural informa-
tion”). This purely categorical view might initially seem
at odds with the idea of spatial networks, where a certain
assumption of spatial homophily seems applicable. But
we wanted to see if other forms of purely categorical ho-
mophily and access can explain away spatial homophily
and access. In effect, we wanted to establish metrics
based purely on π,Ψ that can capture the spatial access
statistics defined above.

A categorical view can have advantages in terms of bet-
ter city planning: it’s easier to control for the distribution
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of categories than it is to control the distances between
them. To see this better, let us define these parameters
for our model. Let Cij be the (possibly asymmetric) trip-
count matrix which encodes the number of trips from a
venue of category i to j. (And sum of trips from a par-
ticular category i be Ci =

∑
j Cij .) Now trips between

two categories can be high for two reasons: either there
are too many venues of those two categories, or people
indeed preferentially travel between venues of these two
categories:

Cij ∝ πiπjΨij

Cij = tr(CTC)πiπjΨij

=⇒ Ψij =
Cij

tr(CTC)πiπj

(3)

Note that we use the sum of elements of the count matrix
tr(CTC) as a normalizing constant, to account for dif-
ferences in usage of Foursquare across different cities. In
this manner, we have decoupled the reasons for observing
a certain trip-count Cij into two orthogonal parameters.
For city planners, this provides a way to provide good ur-
ban access (loosely defined here in terms of encouraging
more trips): increase the number of venues of categories
where people have high affinity.

Correspondingly, we define two types of metrics for
measuring and comprehending urban access of a given
city:

• Local Access: This refers to statistical moments
of affinity between pairs of venue categories.

1. Variance in Absolute Affinity: a smaller value
implies similar affinities between many venue
categories, that is, people “use-up” the avail-
able venue categories.

Φσ =

{∑
i

(
Ci

tr(CTC)

)2
1

πi

}
− 1

2. Mean of Relative Affinity: a smaller value im-
plies people have more affinity to travel be-
tween venues of different categories than of the
same, thus encouraging category mixing.

Φ̃µ = −
∑
i,j

πiπj log
CijCji
CiiCjj

• Global Access: This refers to topological mea-
sures of “reachability” amongst all venue cate-
gories. They are global because of an ordering they
impose on pair of communities, by the extent of
pairwise affinity between them.

1. Connectivity: β̂0 is area under the Betti-0
curve; a smaller value implies venue categories
which people have a high affinity to travel be-
tween are more abundant in the city. That
is, smaller value implies higher connec-
tivity.

2. Edge Density: β̂1 is area under the Betti-1
curve; a larger value implies venue categories
which people have a high affinity to travel be-
tween are (significantly) more abundant in the
city. That is, larger value implies higher
edge density.

For a full description, derivation, motivation and rela-
tionship between these statistics, see the appendix (V C).

IV. COMPARING SPATIAL & URBAN ACCESS

To see if there exists a relationship between spatial and

urban access, the 4 urban access statistics Φσ, Φ̃µ, β̂0, β̂1

were computed for all 10 cities in the dataset, and their
Spearman correlations to the 8 spatial access statistics
were estimated. To check if a purely fundamental statis-
tic could correlate with spatial access, spatial access
measures were correlated with 2 more candidate urban
statistics: (a) number of categories (k) and (b) disper-
sion of distribution of venue categories (

∑
i π

2
i )–a purely

category-distribution based urban access statistic. We
plot the full correlation matrix in the appendix section
V D in figure 7, but below we describe the key result of
this analysis, as elucidated in figure 3, 2.

FIG. 3: Spearman Correlation Coefficient between
select Spatial and Urban access statistics. Considering

p-value≤ 0.05 as significant, median trip distance
correlates with local availability ai(R), and global

access–node connectivity β̂0.

• Median trip distance significantly negatively corre-
lates with local availability ai(R): this captures the
intersection of human behaviour and city space,
that of spatial homophily. People are willing to
travel longer distances when enough venue cate-
gories are not locally available.
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To make this more concrete, consider the two cities
with the largest and smallest median trip distances
respectively: Los Angeles and New York. New
York was found to have a large local availability,
meaning that a large fraction of the possible cate-
gories (≈ 35%) can be found within 1km of a ran-
domly chosen venue, whereas this number is closer
to (≈ 15%) for Los Angeles. This is intuitive, as
users are less likely to have to travel larger dis-
tances if a large range of different venue categories
are locally accessible.

• Median trip distance significantly negatively corre-

late with global access connectivity β̂0: this captures
the intersection of human behaviour and venue cat-
egories. Cities which offer more venues of cate-
gories that people have a high affinity for are the
ones where people are willing (or made) to travel
longer distances. One could intuit this is simply
because commuting categories such as “metro sta-
tions” would enjoy a high affinity, and they would
be further apart in bigger cities thus causing this
correlation. However, when we plot the connection-
events corresponding to “metro stations” for New
York and Los Angeles (see figure 6), which have
the largest and smallest areas under Betti-0, and
the smallest and largest median trip distance, we
do not see those events alone causing the significant
decline in the curve for either of the cities. Indeed,
other non-commuting venue categories are
contributing to this effect.

• Local availability ai(R) significantly positively cor-

relates with global access connectivity β̂0: this cap-
tures the intersection of city space and venue cate-
gories. Cities which offer more venues of categories
that people have a high affinity for can only do so
at the expense of making some venues less locally

available. For example, Los Angeles has a large β̂0,
meaning that it provides its residents with more
venues of those categories that they have higher
affinity to. However, the average ai(R) is relatively
small meaning that the area surrounding any par-
ticular venue is less likely to have a diverse range of
venue categories. This seems to suggest a funda-
mental trade-off in urban planning: between
keeping venues diverse and keeping popular venue
categories plentiful. Looking at figure 2, we sur-
mise that London best provides the sweet-spot of
local venue diversity and global venue popularity.

V. DISCUSSION

The aim of this study was to explore how the accessi-
bility of different venue categories within different cities
interplays with users’ behavioural preferences. We have
shown that metrics based on behavioural, spatial and

categorical information are inherently related. People
prefer venue diversity, and are willing to travel longer
distances for it. Cities, on the other hand, have to play
the balance of keeping city regions locally diverse, while
providing more venues of categories that people have a
high affinity for.

Methodological advantages. Comparing the statis-
tics defined in sections V B and V C gives us complimen-
tary ways for urban planners to understand the interac-
tions between different venue categories at both a local
and a global level. Both the venue-category graph (see
section V B 2) and the inter-category affinity matrix, Ψ,
(section V C) are amenable to treatment using the vast
array of tools from modern network analysis [3]. For ex-
ample, performing community detection on the weighted
venue interaction graph defined in section V B 3 allows
us to explore groups of venues which perform the same
“function” in a city.

Shortcomings. The correlations observed in Figure
7 were observed on the basis of 10 data points. The 10
different cities were spread across different continents so
we might expect some level of robustness to variability
caused by cultural and geographical factors. Nonethe-
less, to be more confident about our conclusions it would
be necessary to: (a) consider a much larger database of
cities, or (b) compute these statistics at a higher spa-
tial resolution (e.g at the level of neighbourhoods within
cities).

When studying both the urban and spatial access
statistics we have yet to contrast our findings with a
suitable null model. For example, in the urban access
statistic we might make a comparison with the data we
would obtain if users travelled purely at random between
categories while keeping the same number of overall trips.
Furthermore, in the case of spatial access we might need
to explore further the heterogeneity in distribution of
venue categories to provide a more detailed interpreta-
tion of our results.

In our construction of the venue-category graph in V B
we only consider a relatively small fraction of the total
number of venues. Consequently, the graphs obtained
may not give us a substantial picture of the full rich-
ness of venue category interactions. In addition, we have
considered only a single value of radius R in the con-
struction of the venue-category graph. Preliminary sim-
ulations suggest that the results are relatively stable to
different choices of R, however, a full investigation of this
effect is beyond the scope of this work.

Future directions. It will be of interest to compare
our analysis with existing analysis of urban mobility us-
ing tools from network science [4], and to see if current
principles of city planning can be rediscovered, or new
ones propounded, using our work. Another intriguing
prospect would be to connect cities’ urban access with
people’s social access and health. Studying how one
shapes the other will truly help us design cities of the
future.
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APPENDIX

A. Data Description

We use data about Foursquare check-ins for 10 different
cities. The data used consists of two parts:

1. Venue information. For each venue in the table
we have: venue id, name, latitude, longitude and a
category.

2. Movement information. For each journey we
have: id, id 2, Data, Period (MORNING, MID-
DAY, AFTERNOON, NIGHT, OVERNIGHT),
Number of check-ins (this is the number of check-in
pairs).

Merging the venue and movement information allows us
to study the distribution of trips made between different
venue categories. In this analysis we will ignore the pe-
riod and number of check-ins between venue pairs as we
are focused on the overall of diversity of different venues
that people are visiting. Some statistics about the data
are shown in table I.

B. Quantifying Spatial Access

1. Typical Trip Distances

A ‘basic’ metric which captures the spatial access in
a given city is the typical distance of trips made in the
dataset. We estimate the distribution of trips by tak-
ing a sample of 5000 trips from the venue in each case.
Estimates of the median trip distance based on this sub-
sample are shown in Table I. In the analysis below we
will also consider the maximum distance between trips
estimated from the same sample. This gives us a proxy
for the typical size of a city.

FIG. 4: Plot showing average value of Ai(R) for 100
random venues vs. all the metro stations in each of the
10 cities. The error bars represent the standard error on

the mean. The Pearson correlation coefficient is 0.63
with a p-value of 0.049. The line y=x is shown as a

guide for the eye. Shown for the case where R = 1km

2. Assessing Local Diversity of Category Types

Let V be the set of venues and C be the set of cate-
gories. We are interested in the diversity of venue cat-
egories locally accessible to users across different cities.
Consequently, for a given venue i we will consider the
set of venue categories which lie within R km of i. Let
NTot(i, R) be the total number of venue categories within
distance R from i.

Let C(i, R) be the set of venue categories within dis-
tance R of venue i. We will define a category K ∈ C(i, R)
as being visited if at least one trip originating from i ter-
minates at a venue of category, K. From this we can de-
fine NVis(i, R) ≤ NTot(i, R) as the number of categories
visited from i1.

We can form a bipartite graph consisting of venues and
categories. Form an edge between i ∈ V and K ∈ C if:

1 In this analysis we only consider the journeys originating at the
venue i rather than those starting at venues within its vicinity.
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City Number of venues Number of categories Number of metro stations Number of trips Median trip distance (km)
Chicago 13904 501 28 7775376 2.26
Paris 13588 464 295 7574139 1.63
Singapore 23324 521 81 7723757 2.68
Istanbul 113752 670 104 7372799 4.09
Tokyo 57810 592 366 7798240 1.87
New York 32971 603 282 7805871 1.48
London 22689 530 241 7650994 1.84
Los Angeles 15868 513 17 7721731 3.84
Jakarta 21813 469 4 7801368 2.75
Seoul 15545 433 283 7768926 2.41

TABLE I: Information about the number of venues and categories for each of the 10 cities in the dataset. Median
trip distances are estimated from a random sample of 5000 trips from each city.

FIG. 5: Bipartite venue category graph for 5
underground stations in London and the corresponding

weighted venue-venue graph.

1. K ∈ C(i, R)

2. and K is visited at least once from i2.

We denote the set of visited categories by: CV (i, R) ⊆
C(i, R). Figure 5 illustrates an example of the venue cat-
egory graph for 5 underground stations in London.

In this bipartite graph, the degree of a venue i, κi =
NVis(i, R). Define the local spatial access of a venue, i,
to be:

Ai(R) =
NVis(i, R)

NTot(i, R)
. (4)

This measure informs us about the number of different
categories that individuals choose to visit out of the num-
ber of possible categories. It therefore, servers as a proxy
for the accessibility and the quality of the venues within
the vicinity of i.

If Ai(R) = 1 then individuals visit all the possi-
ble categories out of the available categories, whereas if
Ai(R) ≈ 0 then users are likely to visit few different cat-
egories.

We compute the distribution of Ai(R) values across
the 10 cities for:

1. The venues in the category ‘metro station’. We
note that some cities, such as Jakarta, only have a
relatively small number of metro stations included
in the dataset. Consequently, the comparison of
the accessibility of metro stations to that of other
cities may not be fair.

2. A sample of 100 randomly selected venues.

2 A more robust way of associating venues with categories might
be obtained by ensuring that a set threshold number of trips
occur between the specified venue and category pair within the
threshold distance. However, we do not consider this in our
initial analysis
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Figure 4 shows the mean values of Ai(R) for random
venues plotted against the value for metro stations for
the 10 cities. The correlation between the two indicates
that the accessibility of metro stations in a given city has
a similar mean distribution to that of venues in general.

3. Reduction of the Bipartite Graph

We can project the bipartite graph considered in the
preceding section onto the set of venues V in order to
obtain a new weighted graph. This graph can be rep-
resented by a weighted adjacency matrix, W , where the
edge weights:

Wij = |CV (i, R) ∩ CV (j, R)|, (5)

represent the number of common categories which users
have chosen to visit from the venues i and j (within a
radius R).

We consider the following graph statistics:

• Mean weighted degree. The weighted degree
of a node represents the total number of shared
categories with other nodes. If the projected graph
has a large mean weighted degree then venues have
i) a large number of visited categories which are ii)
shared with many other venues.

• Average weighted clustering coefficient. We
can interpret this metric as follows: If venue A
shares many venues with B and C then venues B
and C are also likely to share a large number of
venues.

Note that since we have fixed R at a specific value that
these statistics tell us about the local similarity between
randomly chosen venues.

C. Quantifying Urban Access

1. Local Access

This refers to a measure of affinity between pairs of
venue-categories, Ψij ,∀i, j ∈ {1, 2, . . . k}, which can be
averaged over to obtain overall pairwise-affinities enjoyed
by a given category: φi,∀i ∈ {1, 2, . . . k}. This can be
further aggregated to obtain the mean and variance in
the overall affinity enjoyed by the venue-categories of a
given city: Φµ,Φσ. Mathematically, there are various
ways to define these ideas concretely. We use the simplest
and most interpretable formulations to write in matrix
notation:

φ = Ψπ

Φµ = Eπ[φ] = πTφ = πTΨπ = 1 (from eq 3)

Φσ = Eπ[(φ− Φµ)T (φ− Φµ)]

= πTdiag((φ− Φµ)(φ− Φµ)T )

= πTdiag((Ψπ − πTΨπ)(Ψπ − πTΨπ)T )

=

{∑
i

(
Ci

tr(CTC)

)2
1

πi

}
− 1

(6)

Due to the normalisation we have performed, Φµ = 1
for all cities. But if we hadn’t, it would have captured to-
tal number of trips, an intuitive measure of urban access.
Φσ on the other hand captures variance in trip-counts
across categories. For a null model where all k categories
are equally distributed and have the same trip counts, it
would amount to exactly 0. These local access measures
capture notions of absolute affinity. Another interest-
ing affinity to look at would be relative, with regards to
affinity of a category to itself. This would directly cap-
ture the idea of categorical homophily. One simple way
of doing this is to take a negative-log-ratio of the affinity
matrix Ψ with respect to its diagonal elements. Corre-

spondingly, let us define a new relative affinity matrix Ψ̃

such that Ψ̃ij = − log
(

Ψij

Ψii

)
. Clearly, if people take trips

between venues of same categories with the same affinity
as to other categories (“ambiphily”), this value is 0, pos-
itive if they prefer trips between venues of same category
(“homophily”) and negative otherwise (“heterophily”).

Definitions for relative local access, Φ̃µ, Φ̃σ, analogously
follow. Specifically, we highlight:

Φ̃µ = −
∑

(i,j)∈S

πiπj log
ΨijΨji

ΨiiΨjj

= −
∑

(i,j)∈S

πiπj log
CijCji
CiiCjj

(7)

where set S is set of all category-pairs i, j such that i < j.
(Note that a 0 trip-count between any two venue cate-
gories will lead to an improper value of this statistic.
We get around this problem by finding a good approxi-

mation Ψ̂ of the Ψ matrix not containing any 0 entries,
whose statistic can be computed instead. This is fur-
ther described in section V C 3.) It is easy to see that in
the null model where every category has same number
of trips to another category as it does to itself (agnos-
tic “category mixing”), this value is exactly 0, irrespec-
tive of distribution of categories itself. A negative (posi-

tive) value encourages more (less) mixing. Say log
CijCji

CiiCjj

is some constant 2κ, then Φ̃µ = −κ
(
1−

∑
i π

2
i

)
. The

second factor is a positive number that measures dis-
persion in the distribution of venue categories, with a
small value indicating few categories in a disproportion-
ate balance, and a large value indicating many categories
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in proportionate balance. For “heterophilous” networks,
κ > 0 which leads to good urban access, further bettered
by many equiproportioned categories. For “homophilous
networks” κ < 0 which leads to poor urban access, fur-
ther worsened by many equiproportioned categories.

2. Global Access

This refers to overall measures of “reachability”
amongst all categories in a network. While most trips
can be considered to occur in isolation, people typically
pass through multiple venues, spread across venue cat-
egories, in a typical trip across the city. Thus, a more
global measure of access should capture the ease of per-
forming multiple and diverse trips in succession. As be-
fore, there can be multiple mathematical frameworks to
capture this idea. We define our access statistic inspired
from topological data analysis [5], in a manner that’s eas-
ily interpretable.

Since we have defined a probabilistic model, Ψij can
be treated as an activation threshold over which edges
are added between venues of category i and j. Corre-
spondingly, we can define a Vietoris-Rips complex for the
venue-interaction network wherein the distance between
venues of two communities is given by δij = −(Ψij+Ψji).
(Although distances cannot be negative, we make use of
the negative merely to demonstrate that categories with
higher pairwise affinities between them are closer in this
metric space than those with lower affinities.) Now given
some activation threshold ε ∈ [min(δij),max(δij)], we
can define a filtration of simplicial complexes to obtain
a “barcode” for the family of venue-interaction networks
generated as a sample of the probabilistic model. We
only consider simplicial 1-complex, that is, 0-d (nodes)
and 1-d (edges) complexes. More precisely, given a net-
work with n venues, this barcode is completely defined by
n, π and Ψ. While Ψ determines the threshold ε, n and π
determine the number of edges added. Correspondingly,
we can obtain the Betti curves for 0-d and 1-d homolo-
gies, wherein the Betti numbers are plotted against ε.
Betti-0 at given ε, β0(ε), corresponds to number of con-
nected components k(ε). Since we consider only upto
1-d complexes, Betti-1 at given ε, β1(ε), corresponds to
n−k(ε)+m(ε), where m(ε) is the number of edges added
up to a certain threshold. Since we do not wish for n itself
to affect the analysis, we can normalize β0 by n and β1 by
n2 and assume n → ∞. Under this asymptotic assump-
tion, β1 simply corresponds to the edge density, and β0

to the density of connected components. Note that since
Ψijs follow a log-normal distribution for this dataset, we
logarithmically transform them before defining the dis-
tance, that is δij = − log(ΨijΨji). Also, to make things
comparable between cities, we can normalise ε to lie in
[0, 1]. We plot these curves for the ten cities in Figure
2. The β0 curves start at 1, where every node is its own
connected component, and then monotonically decrease
upto 0 where we have 1 large connected component. Sim-

ilarly, the β1 curves start at 0, when no edges are added,
and monotonically increase upto 1 where we have a fully
connected network. Correspondingly, we can make use of
area under these “normalised” Betti curves as a statistic.
We refer to area under the Betti-0 curve (β̂0) as global

access - connectivity and that under Betti-1 curve (β̂1)
as global access - edge density. It is easy to see that

a smaller (larger) β̂0 (β̂1) signifies that venue-categories
which people have a high affinity to travel between exist
in a larger proportion in the city, a directly interpretable
measure of urban access.

The reason we refer to these as global access mea-
sures is because the filtration process imposes a global
ordering G on pairs of venue-categories, from highest to
lowest affinity. In this global ordering, consider consecu-
tive category pairs (p, q) and (r, s) such that δpq < δrs.
Consider the (normalised) Betti-1 curve β1(ε) which es-
sentially is the edge density, then between ε = δpq
and ε = δrs, the curve gains a height of πrπs over a
step size proportional to δrs − δpq. That is, β1(δrs) =
β1(δpq)+πrπs. Applying the trapezoid rule, this leads to
an increase in area under the Betti-1 curve proportional

to
(
β1(δpq) + πrπs

2

)
log

ΨpqΨqp

ΨrsΨsr
. Comparing it to equation

7, we note that (β̂1) resembles the mean relative local ac-
cess in its form, except it sums over a global ordering of
category pairs, therefore acting as a “global” access. We

omit the expressions for β̂0 here for brevity, but it leads
to a similar expression composed of sums of πi, πj instead
of products, with an additional condition that bridging
i, j must reduce the number of connected components.

3. Inferring Latent Categories

Consider the category affinity matrix Ψ ∈ Rk×k≥0 and

category distribution vector π ∈ {0, 1}k, where these
k categories are observed, such as “pubs”, “metro sta-
tions”, “parks”, etc. However, one can imagine only a
few m number of latent binary categories to represent
each of these k observed categories in a one-hot encoding
of size m. Furthermore, since one-hot encoding implic-
itly assumes independence of latent categories, one can
independently compute affinities of observed categories
as product of affinities of latent categories.

To illustrate with an example, consider k = 8, and
let m = ceil(log2(k)) = 3. That is, each of the cate-
gories can be represented as bitstrings 000, 001, . . . 111

such that Ψ̂(bp1b
p
2b
p
3, b

q
1b
q
2b
q
3) ∝ Ψbp1b

q
1
Ψbp2b

q
2
Ψbp3b

q
3

and

π̂(bp1b
p
2b
p
3) = πbp1πb

p
2
πbp3 . In general, we make use of the

Kronecker product to write in matrix/vector notation

Ψ̂ = κ
⊗m

p=1 Ψp and π̂ =
⊗m

p=1 π
p where Ψp ∈ R2×2

and πp ∈ {0, 1}2, ∀p. The problem of inference here is

to obtain Ψ̂ as close to Ψ as possible.
We propose a simple and interpretable way to infer Ψis

via eigendecomposition. Assuming Ψ to be a symmetric
matrix, let Q ∈ Rk×k be the set of orthogonal eigen-
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vectors of Ψ. While the first eigenvector corresponds to
the overall “connectivity”, second eigenvector onwards
we obtain successively orthogonal basis of the matrix
which can correspond to the latent categories. Let us
pick Q† ∈ Rk×m as the set of top m eigenvectors after
the first one, and project Ψ to obtain Ψ† = ΨQ†. Now,
the pth position in the latent bitstring of observed com-

munity i is given simply by Ψ†ip > 0.
Once all k communities are partitioned into disjoint

sets 0p, 1p corresponding to pth latent binary category,
πp and Ψp can be inferred by summing the appropriate
entries in the original vector/matrix. Precisely,

πp0 =
∑
i∈0p

πi

πp1 =
∑
i∈1p

πi

Ψp
00 =

∑
i,j∈0p

Cij

tr(CTC)πp0π
p
0

Ψp
01 =

∑
i∈0p,j∈1p

Cij

tr(CTC)πp0π
p
1

(8)

and Ψp
11,Ψ

p
10 analogously follow. The whole reason for

performing this latent category inference is to obtain a
good approximation to Ψ that doesn’t contain any 0 en-
tries. Since we have transformed Ψ into an approximate
Kronecker product of various 2× 2 matrices that are al-
most surely not going to contain 0 entries, this objective
is certainly solved. Moreover, since in estimating relative
local access statistic we take the ratio of entries of Ψ, we
need not infer the constant κ which gets cancelled out.
We can simply pick an m (a free parameter which can be
chosen through domain knowledge or using the eigengap

heuristic), infer Ψ̂ and find the statistic from it instead.
(However, if one really wanted to infer κ, then an extra

constraint can be used, such as for Ψ̂ to have the same
largest eigenvalue as that of Ψ.)

D. Full Correlations

Figure 7 shows the matrix of correlations between the
different spatial and urban access statistics. We observe
the following:

• Ai(R) significantly negatively correlates with Φσ:
(Figure 2a) cities which offer high local venue diver-
sity, are the ones where people have similar affini-
ties to different venue categories. This indicates
people have a preference for diversity, or else we
would have noted a positive correlation between the
two, or no correlation if they were agnostic.

• Ai(R) significantly negatively correlates with k:
cities which offer high local venue diversity are the
ones with fewer number of categories. This is possi-
bly because people’s usage of new venue categories

scales sub-linearly with the number of categories
added.

• The dispersion of the distribution of venue cate-
gories alone does not correlate significantly with
any spatial measures. This suggests that the dis-
tribution of venues across categories alone does not
determine overall spatial access. We expect this to
be the case given the reported universality in mo-
bility patterns between different cities [1].
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FIG. 6: Normalised Betti curves for (a,b) the ten cities, and (c) Betti-0 curves for New York and Los Angeles with
“Metro Station” events marked.

FIG. 7: Spearman Correlation Coefficient between
various Spatial and Urban access statistics.

Correlations with p-value> 0.15 have been masked.
Considering p-value≤ 0.05 as significant, Φσ correlates

with Ai(R), and global access statistics β̂0, β̂1 correlate
with trip distances.
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