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Abstract
The central objective of recent strides taken by biology and biochemistry, has been to simplify the complexity

of biological systems, and of life itself. While we have developed fields such as systems biology, to better
understand molecular interactions that govern metabolic pathways, signal transduction and genetic expression
within living cells, we have much older and popular theories such as Darwin’s theory of evolution that try to
explain the existence of and diversity in life, the way it is. We wish to engineer living and biological systems
to suit our own purposes, like increasing longevity of life, treating diseases, developing “synthetic life” for
reducing human effort, etc. But in our rush of progress, what we often ignore is the question of pragmatism
and computational intractability. The theories and models we propose, and the questions we try to answer,
serve no utility if they are impractical for application, subject to the current limits of our mathematics and
computational abilities. There are, of course, various problems in mathematics and computer science that have
been deemed unsolvable (like the Halting Problem), or computationally intensive (like the Maximum Independent
Set Problem which is NP hard), but can similar limits be imposed on problems in biology? Our intuition tells
us yes, and certain recent advances in the theory of computation, cell automaton such as the Game of Life, and
the principles of Computational Equivalence and Computational Irreducibility, as coined by physicist Stephen
Wolfram, are in overwhelming support of this intuition. We follow these principles, and view systems under the
lens of computational pragmatism, to uncover the possible limits imposed on our understanding of Biological
Sciences, the way we know it.

Keywords: biological complexity, principle of computational equivalence, computational pragmatism,
determinism, human brain
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1 Introduction: Characterising Complexity
What defines the complexity of a system? Complexity is, at a high level, a metric for characterising systems with
multiple parts, interactions and visibly sophisticated behaviour. It is, indirectly and usually, a measure which
is proportional to: the level of difficulty of technique, the amount of time and expense of energy, applied for its
analysis. Let us take a closer look at how complexity manifests itself within two systems that are important for
establishing the foundation of the arguments that follow.

1.1 Biological and Living Systems
A biological system is often regarded as a complicated container of interrelated biological entities, which could
be established on different scales: from the molecular, to the genetic, to the organelle, to the cellular, to the tissue,
to the organ, to the body and eventually, to the ecosystem itself. Some of these biological systems are special, in
the sense that they are alive, which is when they are called living systems. The definition of the signature of life
has itself been a widely researched and debated idea, with biologists and philosophers arguing over it for centuries.
The main reason for the difficulty being that life is not an embodied object, rather, it is a process that is undergone
by certain biological systems, like bacteria, plants and animals. Moreover, a large variety is observed across various
lifeforms, which makes it hard to fit a single definition, generalised over all instances of life. Biologists have come up
with a convenient criteria for defining lifeforms (convenient, because it aids in being an established starting point
from which further analysis, and fields like synthetic biology, can take off), something which they call the three
operational functionalities[1]:

1. They exhibit an exchange of energy.

2. They have a chemical realisation of information control that can be passed on in a replicable manner.

3. They possess a boundary that encloses the above two, to create a system segregated from surroundings.

Philosophers might squirm over this definition, and laymen may find it too simple to fit the diversity of life they
see. And indeed, one of the challenges that biology faces as a science, is to fit an idea to one and to all. Which
is why it is often quoted as a science of exceptions. It is easy to see that if the definition of life itself is so widely
debated, where do we even begin to break down biological and living systems? Indeed, biology tries to understand
some of the most complex, specialised, and high-information objects in existence. (Erwin Schrödinger went on to
define life as a process which decreases its entropy by feeding on negative entropy[2].) However, the fields of physics
and chemistry, whose positions have been well established in the realm of science, seem to contain more consistent
and predictive theories and laws, describing the behaviour of point particles and molecules. At this low level of
abstraction, the entities involved show much simpler and observable behaviour. This led biologists and philosophers
alike, to the belief that biological studies could be reduced to these simpler physiochemical phenomena described
by physics and chemistry (something called epistemic reduction). After all, it is fundamental particles like quarks,
fermions (which include electrons), bosons and mesons that build up all matter and energy in the Universe.

The French philosopher Descartes was one of the first people to analyse the tool of reductionism, wherein any
system can be analysed by investigating the individual parts of the system in a mechanistic manner. This tool seems
useful when one reads about the history of science, particularly physics, and it was adopted by the early Molecular
Biologists of the 20th century. So much so that Crick, the co-discoverer of the structure of DNA, went on to say
in 1966 that “the ultimate aim of the modern movement in biology is to explain all biology in terms of physics
and chemistry”[3]. However, reductionism doesn’t seem to hold much significance in contemporary science, simply
because expressing an object as a sum-of-parts is too simplified an assumption to be able to define and predict
the behaviour of systems that are studied today, accurately. The Greek philosopher Aristotle had described this
anti-reductionist belief in his treatise Metaphysics as “the whole is more than the sum of its parts”[4]. The main
criticism of reductionism is that it blatantly ignores a very important feature of most complicated and biological
systems: interdependencies. Biological systems show relationships between parts at every level: molecular, cellular,
right up till organisational. Therefore, studying individual parts in isolation would rarely build the whole picture.
For example, the signalling pathway in a living cell which leads to apoptosis (programmed cell death), has numerous
feedbacks and feedforwards between various classes of proteins that interact with each other to ’decide’ if the cell
will commit suicide or not. And as these signaling networks get larger and larger, the power of molecular biology
weakens further in further in modelling them well.

As one dwells deeper into the complexity of biological systems, it doesn’t take much time to realise that the
dream of reducing it to physics and chemistry will never see the light of the day. Because the moment we move to
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higher levels of abstraction, from the levels of particles and simple molecules with countable types of behaviour, to
the levels of interconnected entities and biological networks with seemingly uncountable kinds of behaviour, there
seems to be a sudden jump between the levels. Somehow, there is a gap which the objects overcome, across which
the objects of that level have become very complex and show often chaotic and unpredictable characteristics. For
instance, we have been successful in characterising the 21 essential amino acids that make up all proteins, but
predicting protein refolding (sequencing of these amino acids to form protein chains) is a very complex and hard
task[5] (in fact it is NP-hard, covered in Section 3.1), for which we have only approximate solutions, that too for
the easier problem instances[6].

Figure 1: A network representation of pairwise gene interaction in Yeast[7]. This gene network shows the high
density of relationships between various nodes (entities), and the reason of inseparability of different parts of this
network, for a complete and accurate analysis.

The discussion on biological complexity is incomplete without talking about the most complicated piece of
organic machinery known to mankind: the human brain. As one moves from the level of cellular signal networks
to the level of a complicated organ such as the brain, the interactions between individual parts become even more
intertwined and complicated. The human brain, as per latest and closest estimates, consists of 86 billion neurons[8],
close to half the number of stars in the Milky Way galaxy. To appreciate the computing power of this machine, even
if one encodes the brain as a state machine with every neuron being either ON or OFF, we have 286000000000number of
states. One may note that there are an estimated 2300 number of fundamental particles in the observable universe.
The real power of the brain however, doesn’t lie in the neurons themselves, but the immensely high number of
connections (synapses) they form with one another, 125 trillion by some estimates[9]. The numbers alone are
sufficient to show the wondrous capabilities and unpredictabilities of the brain. Unlike practical computers, the
brain is highly decentralised and processes information at very fast rates with a lot of parallelism, which is why we
are able to do complicated non-linear tasks such as identifying shapes, faces and textures with a lot of ease and
non-expense of energy (unlike computers), whereas computers are much quicker in doing seemingly linear tasks like
basic arithmetic. We have been able to quote Darwin’s theory of evolution and natural selection to attribute to
the creation of such a beautiful piece of biological machinery (as the evolutionary development of the cognition
controlling neocortex), but unable to fathom the processes of brain functions. This is because the brain keeps
moving, seemingly continuously, from one state to another, making new connections and breaking old ones forward
in time, reaching the same state never again.

Philosophers have branded this dynamic nature of the human brain, or any other brain for that matter, to
the idea of consciousness and free will. Widely ununderstood, consciousness and free will is the black box which
encases the human brain’s behaviour; a box which appears to be impenetrable to our attempts at modelling it
accurately to claim any strong predictions about it. Ramon Cajal, the father of neuroscience, was a pioneer in
deciphering the structure of the brain. He studied neurons across species, particularly in a pigeon’s cerebellum,
to sketch small localised networks in which the neurons were connected. Since then, we have come a long way in
describing locations in the brain from where various bodily functions are controlled, thanks to the phenomena of
loss-of-function due to neuronal damage, and modern imaging techniques like MRI. However, the brain has never
been described in its entirety. The reason is simple: the numbers are too large to be contained within a reasonable
model. So the question is, can we break the illusionary black box and decipher the workings of the brain and
perhaps even predict its behaviour, through a reduction of the brain to a smaller problem with a lower level of
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computational complexity? Like a map legend, where one kilometre is not one kilometre, but one millimetre? The
outcome of such a development would be exciting to say the least. In fact, it would be a paradigm shift in modern
biology, psychology, sociology, economics and (arguably) one of the biggest achievements of human civilisation. One
could even say that it would change our entire perspective of understanding Life and the Universe, the way we know
it.

Evidently, we have been unsuccessful to do so till date (otherwise George Orwell’s 1984 might have as well been
based on a true story!). And as we’ll see in Section 3, it is almost certainly unlikely that we’ll ever be able to reduce
the brain to another system of lesser computational complexity.

1.2 Computational Systems1

In the field of theoretical computer science and mathematics, computational systems are essentially equivalent to
programs (which have the same connotation as the one used in everyday computer science jargon). In the theory
of computation, every program can be represented as a bitstring (a string of 0s and 1s), which can be run on a
’computer’ to obtain the result for which the program was intended and written. Before we understand how one
can define the complexity of a program/system, we must take a closer look at the theoretical foundations of the
usual, and now ubiquitous, computer.

The modern computer architecture, often attributed to the polymath John von Neumann, in essence consists
of an input device (keyboard, mouse), an output device (hard disk storage, monitor), a central processing unit
(the processor), and a memory unit (the RAM). This architecture itself is based on a theoretical abstract idea
which was proposed by the computer scientist Alan Turing, called Turing Machines. A Turing Machine has an
infinite tape (corresponding to infinite memory), a head (analogous to the input device), a finite table and the state
register (consisting of the program instructions, essentially the ’bitstrings’, and the state of the machine, both of
which are stored in the RAM of a modern computer). Note that a Turing Machine is physically inconceivable, and
computationally more powerful than a practical modern computer, because of the presence of infinite amount of
memory. A Turing Machine is just one model of computation (also the most powerful), but it is further preceded
by another model of computation called Finite State Automata (FSA).

The finite state automata model consists of discrete states, with certain transition functions that govern what
the next state will be, depending on the value of the current state. If the transition functions are deterministic, they
are called DFAs (Deterministic Finite Automata), else if they are non-deterministic (that is, certain probabilities
are associated with the transition function, for example: state A can go to states B or C with equal probabilities of
0.5), then they are called NFAs (Non-deterministic Finite Automata).

Figure 2: The progress leading to the creation of the modern computer, starting from the theoretical models of
FSA and Turing Machines, going up to the von Neumann Architecture.

Armed with the idea of DFAs and NFAs, we can now move to defining complexity of a program. For every
instance of a problem, represented as a bitstring of length n, its complexity (or more importantly, the time com-
plexity) is a function f, which maps n to the number of basic computational steps (basic steps could be defined as
the elementary operations of add, subtract, load and store from memory, etc.) required for the algorithm of this
program to terminate. That is, f(n) is a measure of the amount of time it will take for an algorithm to run on
a particular problem instance. Usually, to eliminate the variation that can creep in because the selected instance
may be easy or difficult, we evaluate asymptotic f(n) for the worst-case scenario.

1This subsection may be skipped if the reader is comfortable with the ideas and notation of computational complexity classes.
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Computational complexity can be used to define the idea of efficiency of an algorithm. An algorithm is said to
be efficient if it runs in polynomial time, that is, if f(n) is a polynomial in n. Otherwise, say if f(n) is exponential
in n, then the algorithm is not considered to be efficient. This leads us to the question, does there exist an efficient
algorithm for a given program/system? This highly important question remains unsolved for a variety of problems
in the field of computer science. If a program has an efficient algorithm, all of its instances can be solved in an easy
manner using that algorithm, and if a program has a non-efficient algorithm, then at least some of the instances
will be solved in a hard manner using that algorithm. However, can we somehow relate problems and classify them
based on the idea of efficiency and complexity?

Yes, there is a large number of problems (accounted for after conversion into their decision versions, which end
up in a yes or no answer), that have been classified into computational classes. Class P (Polynomial) is the class
of problems which can be solved using an efficient (polynomial time) algorithm. Class NP (Non-deterministic
Polynomial) is the class of problems which have an efficient certifier, that is, there exists an algorithm A which,
given the problem (program) and a yes/no instance of the problem, can certify whether it is a yes or a no instance
of the problem (by outputting, say, 1/0), in polynomial time. Evidently, class P is a subset of NP, since an efficient
algorithm for a program is an efficient certifier itself. Now, we define the class NP-Hard. A problem X is said
to belong to class NP-Hard if every problem in class NP can be reduced, in polynomial time (time ≡ number
of computational steps), to that problem. In essence, these are the hardest problems as far is complexity
is concerned. Such problems are often referred to as being computationally intractible. Furthermore, the
intersection of NP and NP-Hard is called NP-Complete problems; problems which are the hardest of all problems
in class NP.

Figure 3: The Euler Diagram describing the Computational Complexity Class if (a) P6=NP and (b) P=NP (Source:
Wikipedia)

The implications of such a classification are fairly interesting:

1. Every problem in NP-Hard is at least as hard as all the problems in NP.

2. If a problem in class NP-Hard is solved efficiently, then every problem in NP can be solved efficiently (since
every NP problem can be reduced efficiently (in poly time) to that problem in NP-Hard). This would imply
that P=NP. Proving, or even disproving this equivalence, remains an open and one of the biggest unsolved
problems in the field of computer science! (Also, if proven true, then many of our cryptographic protocols,
such as the popular RSA-encryption, would immediately break down.)

3. A problem in P can be solved in polynomial time by a deterministic machine (DFA), while a problem in
NP can be solved in polynomial time by a non-deterministic machine (NFA). (Hence, the names of these
computational classes.)

The power of this classification lies in the fact that it:

1. provides us the ability to concentrate on solving few problems, which, if successfully solved, would lead to the
automatic solving of many other problems.

2. establishes a sense of hierarchy of classes of complexity (where we have sudden jumps in the complexity as one
travels from one set to another), wherein the problems belonging to a lower class of complexity can be easily
solved, but the ones in higher classes cannot be solved easily in our current capacities of modern computing.

Although it is an unsolved problem, computer scientists largely believe that P 6=NP, and thus, we would almost
certainly never find efficient algorithms for solving such problems in the current computational paradigm.
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2 Principle of Computational Equivalence (PCE)
2.1 Mapping Processes to Computations (Church-Turing Thesis)

Stephen Wolfram, in his magnum opus A New Kind of Science, tried to show every natural process as a natural
“computation”. He claims that “all processes, whether they are produced by human effort or occur spontaneously
in nature, can be viewed as computations.” This assumption, in part, is based on the overwhelming evidence we
have for various natural processes; the fact that we have been able to model various small-scale biological metabolic
networks, predict electron behaviour in a crystal lattice, roughly model weather systems, predict market conditions
of the world economy, etc. The scope for validity of this assumption also lies in the hope that we would be able to
model a variety of useful natural processes, which is the very driving force behind modern science and engineering.
The assumption of treating processes as computations, in fact, implicitly already exists in every scientific exercise.

Once we have established this mapping of natural processes to computations, we can extend our idea of natural
computations by invoking the Church-Turing Thesis, given by mathematicians Alan Turing and Alonzo Church in
1936. In their own words, the

Church-Turing Thesis states that every effectively calculable function is a computable function.[10]
By effectively calculable, they mean that it is created by any effective means, while computable refers to the

fact that it can be computed by a Turing Machine (TM). This seemingly vague statement is actually a very strong
claim and conjecture, that has held up to the test of every single problem till date, and is expected to keep doing so
in the future. However, it has not been proven by any means, which is why it remains a thesis, and not a theory. In
essence, it means that if a function can be computed, then it can be computed on a Turing Machine. This extension
of the argument allows us to bring any natural process under the ambit of Turing Machines, in the light of viewing
them as computations. The reader may find this astonishing or unbelievable, since real-world problems seem too
complicated to be handled by a simple system such as a TM. However, simplicity of a paradigm doesn’t imply that
it is powerless. Indeed, the fact that the tape is infinite in length, provides enough impetus to this computational
model to handle arbitrarily large and complex natural systems. An example to look at complex behaviour arise
from the simplest of rules is the subtract-and-branch-if-negative (SBN) machine language instruction. SBN can
potentially be combined with itself to create all possible arithmetic, conditional and branching operations of any
low-level program, which can eventually be combined amongst each other to create more complicated high-level
program instructions like “compute Fourier series for a signal”, etc. Therefore theoretically, one instruction is
actually sufficient to encode almost every possible programing problem.

2.2 Building the Complexity Pyramid (Computational Equivalence and Computational Irreducibil-
ity)

Having understood the above assumption, we can now state the Principle of Computational Equivalence (PCE) in
all its simplicity and entirety.

Principle of Computational Equivalence states that almost all processes that are not obviously
simple can be viewed as computations of equivalent sophistication.[11]

By obviously simple, it is meant that something which is obviously repetitive, or nested, or easily modelled
as predictive, stochastic or random. Some examples could be:

• the motion of the Earth around the Sun. It is highly repetitve with near to zero changes in the path followed
by the Earth every year.

• the projection of a small body across a given trajectory. This can be easily repeated with the same parameters
of distance/velocity/force in every subsequent experiment.

• the replication of DNA within an organism. The DNA replicates with a remarkably low error (as low as 10-10

in some bacteria[12]) and thus one can be almost sure about its repetition within the organism.

Many more “natural phenomena” could be added to this list with relative ease. But perhaps, even more number of
phenomena could be added to the list of processes with equivalent sophistication:

• the weather is very highly non-repetitve. It is evident in the way that we have global temperatures changing
every year and deviating from the previous standards, or in how we bear the brunt of hurricanes or droughts
or floods, with a differential impact across different years. We seem to never come back to a previous state of
weather conditions.
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• the human (or, for that matter, almost any) brain. As already mentioned before, the sheer number of
connections are too high, and a human’s life is too short, to exhaust all the possible states the brain can be
in. Thus, the brain never returns to the same state (which is good for us, else we would lose all sense of the
flow of time!).

• heredity and evolution. Consider the case of human beings, where DNA is the basic unit of heredity, that
encodes all the genetic information of the organism. While DNA replication seems to be obviously simple,
the fact that sexual reproduction goes via the route of crossovers and mutations, ensures that the DNA being
passed to the next generation is different from the parents’ DNAs (if one excludes the exception of twins). Of
course, not every part of the DNA being passed down within the same species would be different. The human
genomes consists of around 32 billion base pairs[13]. Out of these, around 2% of base pairs (640 million base
pairs) are considered to be the coding regions[14] (regions which code proteins). If, in the worst case, one
assumes that there could be any of the two possible base pairs (A-T and G-C), then we could have a total
number of 2640000000 possible combinations. Again, the numbers are overwhelmingly high for the DNA to be
repeated across generations, or to reach the same state, making evolution a sophisticated process.

But in what sense are these complicated processes equivalent to each other? The answer lies in their universality.

Universality states that a computation is universal if it can emulate any other computation.[15]

Even for processes seemingly very different from one another, their underlying principles would still show a
certain equivalence, in the sense that they are governed by rules that can achieve universality. For example,
consider the Cell Automata Systems called Rule 110 and Conway’s Game of Life. Both of these cell automata show
different characteristics (which, at a high level, could be interpreted as a variety of complex behaviour), that arise
form different, but few very simple rules. What makes them equivalent though, is the fact that both of have them
have been proven to be universal[16]. They can compute any calculable function, much like a Universal Turing
Machine (UTM is a Turing Machine which can simulate any other Turing Machine). Therefore, Rule 110, Game of
Life and UTM are all computations of equivalent sophistication, in the sense that they are universal. The brain,
including other natural processes (read: computations) of sophistication as described above, also belong to this
class of computational sophistication, and are equivalent to TMs and Game of Life in this sense.

Figure 4: A snapshot showing a Turing Machine simulated on the cell automata Game of Life (Source: Pentade-
cathalon)
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Note that the conditions for universality can be very simple indeed. Complexity of behaviour does not imply
complexity of rules. A TM has very simple parts and rules of reading and writing, but its infinite tape (although not
just on its own) makes it highly powerful. Similarly, Game of Life has three very simple rules of deciding whether a
cell in an infinite array is dead or alive, but the infinite cardinality of the array (again, not just on its own; some cell
automata of infinite array size are not universal) makes it highly powerful. [Availability of infinite memory appears
to be, logically, a necessary (but not sufficient) condition for universality. Or the size should be at least as large so
as to contain any arbitrary practical problem.]

The question that arose earlier in our discussion of complexity, that whether we can reduce highly complicated
problems to problems of fathomable complexity, becomes significant here. To find that “map-legend” which gives
a good reduction, we need to somehow be able to talk about and describe the problem via a shortcut-of-kinds,
without actually executing the problem itself. For instance, computing the sum of integers from 1 to 100 could be
done by computing “1 + 2 + 3... + 100”, which would be the original problem, or one could reduce the effort, time
and energy of computation by simply plugging in 100 in the mathematically derived formula n

2 (n + 1).
The primary objective of mathematical and numerical analysis has essentially been to create such map-legends

for all the problems and processes that we observe in different fields of pure and applied science. But is it possible
to create map-legends for all such problems? Or are there some problems that are irreducible to a simpler form?
This brings us to the third critical computational concept of this paper:

Computational Irreducibility is the idea that most of the time, we want to derive some mathematical
formula which allows us to determine the outcome of the evolution of a system without having to explicitly trace
the steps involved[17]. But certain (and certainly, most of the) real-world problems are computationally irreducible,
that is, there is no shortcut to determining the fate of the system without having actually simulated through it.

Let us look at this principle in the light of some of the problems discussed above. Conway’s Game of Life,
for example, has three simple deterministic rules, that given the initial state of the game (a description of which
cells are alive and which are dead), will progress deterministically. One might be curious to know if one could
predict the behaviour of lifeforms as the Game progresses, or say, what would the condition of the Game be after
50,000 generations. Is there a shortcut formula or algorithm to find out this 50,000th state? Turns out, there isn’t
one[18]. The only way to know the condition of the Game after t time steps is to, well, run the game for t time
steps! Therefore, the Game of Life is irreducible. The observant reader would have realised by now, what this
means for other problems belonging to the class of sophistication equivalent to that of the Game of Life. Turing
Machines are, indeed, irreducible to any other model of computation, which is, unsurprisingly, the reason that they
hold so much power and universality in solving other problems! Add to them other natural process like the brain,
protein sequencing, weather modelling, etc., and it’s easy to conclude that since all of these problems are of equal
sophistication, if one of them is irreducible, so are all others.

This analysis of computational classes is analogous to the computational classes of complexity defined in Section
1.2. Just like we have a hierarchy or pyramid of problems, going from NP-Hard at the top to NP-Complete to
NP and finally to P at the bottom, we have a hierarchy going from the class of sophisticated at the top to the
class of obviously simple problems at the bottom. (There could indeed be more number of classes in between, if a
more rigorous and mathematical analysis is done to describe these classes of sophistication concretely.) The idea
being that we can reduce a problem in the direction of going from bottom to up in both of these
complexity pyramids. However, problems are irreducible in the direction of top to bottom.

The above idea has been implicitly in use for as long as computers have existed and have been used for compu-
tational analysis of scientific phenomena. The fact that we are able, and we are hoping, to reduce all our (seemingly
simple) problems into computer simulations and algorithmic analysis shows the reducibility of simple problems to
TMs (a computer is essentially a TM, except that its power is limited by finite memory). Also, as Wolfram states,
“if meaningful general predictions are possible, it must at some level be the case that the system making predictions
can outrun the system it is trying to predict”, a statement which succinctly and intuitively defines the whole idea
of PCE and Computational Irreducibility.
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3 Implications of PCE
3.1 Ideas of Hardness in analysing Biological Systems2

As mentioned in Section 1.1, early molecular biology was based on the idea of reductionism. But soon, when
the complexity of biological systems was started to be appreciated better and biologists realised that their models
were causing oversimplification of biological processes, it gave way to mathematically more rigorous branches of
biology. Evolutionary biology was looked at from mathematical persepectives, converted to the field of population
genetics[19]. More recently, systems biology has been at the forefront of establishing a mathematical analysis of
biological systems.

Systems biology is the study of the behaviour of complex biological organisation and processes, in terms of the
molecular constituents[20]. Among the basic tenets of systems biology, the one that deviates furthest from the older
idea of reductionism is that of emergent properties. These properties are defined as “new properties” which emerge,
that are not a part of the individual components that make the whole (cell)[21]. Life is treated as one such emergent
property, emerging out of DNA, RNA, proteins, etc. Some of the techniques used in modern systems biology include
metabolic flux analysis, metabolic control analysis, physiochemical modelling (which achieves inversely proportional
amounts of predictive power and scope), network modelling, etc. However, one of the biggest challenges which this
discipline faces is that of the expensive (both in terms of time and resources) computation and data organisation.
Moreover, one of the main points of focus of systems biology is on synthetic biology. While branches such as the omics
(proteomics, genomics, metabolomics) and bioinformatics are going from top-to-down, by studying macromolecular
interactions, studies in reaction kinetics and molecular interactions are trying to cover ground from bottom-to-up.
The challenge lies, really, in clearly establishing the murky domain where both of these approaches meet, at the
centre of the pyramid: the jump point of complexity. As Prof. J. Gomes of the School of Biological Sciences,
IIT Delhi suggests, “the success or failure of Synthetic Biology as an engineering discipline depends on where
independence approximations become useful in the continuum between the atomic and macroscopic worlds.”

Figure 5: (A) A pyramid showcasing the complexity of life and (B) the top-down & bottom-up approaches being
taken by synthetic biology. (Source: (A) ScienceMag (B) Prof. J. Gomes, IIT Delhi)

Can this gap of complexity be uncovered effectively? And how far above in the macromolecular world will we be
able to accurately describe and predict biological behaviour? Biology today deals with such challenging questions,
and system biologists are working hard to find ways to answer them. However, any conclusive evidence is yet to
be seen about the indisputable proving or disproving of these tall claims of systems or synthetic biology being able
to predict and model biological elements as complicated as lifeforms. When one refers to the fascinating book by
John Wooley and Herbert Lin, titled Catalyzing Inquiry at the Interface of Computing and Biology, one realises
the plethora of computational challenges which face biologists today. Appendix B[22] of the book lists out a large
collection of highly critical and exceptionally challenging problems in computational biology, like protein structure
prediction, investigating integral function units, bridging the gap between computationally feasible and functionally
relevant time scales, full genome-genome comparisons, rapid topological clustering of proteins, evolutionary model

2A major part of this subsection is attributed to the lectures and discussions with Prof. James Gomes, of the School of Biological
Sciences, IIT Delhi.
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building, genetic circuits, the brain and artificial thinking machines, model brain function, model simplification,
exhaustive discovery and analysis of cancer genes, etc. (the list contains close to 200 such computationally intensive
and grand challenge problems).

As briefly mentioned in Section 1.1, the protein folding problem using the Hydrophobic-Hydrophilic (HP) Model
was proven to be NP-complete[23]. Now, for such a problem, all instances of it may not be hard, but some of these
instances are definitely hard to solve for (refer to Section 1.2). And indeed, system biologists have been trying to
sequence amino acids to study protein formation, but have been unable to do it efficiently beyond even 4 or 5 amino
acids! Even for studying biological boolean networks (BBNs), used to study metabolic pathways in cells, analysis
of identifying attractors, and finding control strategies is NP-Hard[21]. This direct and established correspondence
between algorithms of the highest computational complexity classes and processes (computations) belonging to
highest classes of sophistication, as described by PCE, is further in overwhelming support of these two pyramids
of biological and computational complexity, as described in Section 2.2, being analogous to one another. If this
analogy is explored and strengthened further by coherent and collaborative studies between theoretical computer
scientists and biologists, we could potentially intertwine these two pyramids to build a single pyramid of Complex
Systems in both the Abstract (computational complexity) and the Real (biological complexity) and work forward in
this unified domain where everything is a computation, and some problems can be reduced to other harder problems
that lie at the top tier of the pyramid.

3.2 Determinism, Prediction and Free Will (Newcomb’s Paradox)

The ideas of determinism, prediction and free will have been central to philosophical thinking for time immemorial.
Determinists hold on to the belief that every state (or condition) is completely determined by the previous states. Or,
in other words, for every event we see, no other prior states could have led to this event to occur. Different thinkers
have held different degrees of belief in this concept, with some being hard determinists while other compatibilists.
Hard determinism directly contradicts with the idea of free will, which is the belief that any living entity, and in
particular human agents, have the ability to make their own choices, independent of the preceding conditions or
states. Libertarianism is the other end of the spectrum, which has full faith in free will but holds no truth in
determinism. In between these two extremities, lies other varieties of thinkers and believers, who are either too
confused or too fearful to take a strong stance, or perhaps intelligently cautious enough to not pass a judgement on
an unsolved problem with open fire on both sides of the argument.

Some psychologists, like Skinner, believe that the idea of free will is nothing but a label for a black box of
consciousness that we don’t yet understand. He says that “it is my strong belief that the basic mechanisms of
human thinking will, in the end, turn out to correspond to rather simple computational processes.” If the idea of
free will is indeed an apparent illusion, perhaps PCE and irreducibility hold the power to show how this illusion
comes into being, and if we will ever be able to break out of it.

By the end of Section 3.2, we have established how highly sophisticated biological systems, which include the
human brain, are computationally equivalent to models of computation such as UTMs. They both lie in the top-
most tier of complexity, and cannot be reduced to a shortcut problem which might lie somewhere below in this
spectrum of complexity. Thus, the best we can do to “predict” the human brain is to really, just simulate it, or
run it, on its own. Since even our best computers, which are mere limited versions of UTMs, lie in the same
equivalent class as the brain, the brain cannot be “run” on them. The intuitive reason is similar to what Wolfram
says about the necessity of the predictor computation to “outrun” the predicted computation. Thus, since both
posses equivalent levels of sophistication, one of these can never outrun the other. The question that arises then is,
what can?

A beautiful analogy to understand the path to answer this question, is the English novelist Edwin Abbott’s
1884 novella, Flatland: A Romance of Many Dimensions. The story revolves around a two-dimensional world
called Flatland, wherein the characters are 2D geometric shapes, and the protagonist is A Square (In fact, “A
Square” is the pseudonym under which Abbott wrote this book!). The inhabitants of Flatland are aware of the
existence of a world called Lineland, where everybody is a line in one dimension, and everybody in Lineland is
aware only of the world Pointland, wherein everybody is nothing but one point. Now, the Flatlanders have never
wondered about the existence of a world of higher dimensions, having never encountered anything beyond 2D. For
them, two is the highest one can ever go. Just like for the Linelanders, this magical limit is 1. But then one
day, a Sphere appears from Spaceland to educate the Square about the 3D world. But the Square is not able to
comprehend anything, having never stepped out of his frame-of-reference: the 2D world. However, when the Sphere
transports Square to Spaceland, then by distancing him (on an interesting sidenote, men are polygons while women
are lines in Flatland) from the lower 2D world to an outside 3D existence, the Square realises the truth of what
the Sphere had to say: that Flatland was, in reality, enclosed within the container of Spaceland. However, when
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the Square reports back to Flatland, nobody pays heed to his claims of the existence of a higher world, since all
Flatlanders are constrained by the two dimensions of their world to understand what he’s talking about. And well,
he is imprisoned on accounts of spreading false and foolish fallacies.

In essence, what Flatland teaches us is that many times, to be able to study a system which is at an equivalent
footing, we cannot do so if we are also at the same footing as the system being analysed. We must move to a
higher level, and thus distance ourselves from the system-to-be-analysed, after which we might be able to study it
accurately and objectively. If one applies this principle to the highest class of sophistication which consists of both
UTMs and the human brain, then a strong claim would be to suggest that one could study and predict the human
brain, and thus debunk the “myth” of free will, only through a computation (read: method) which lies in a class of
sophistication above the brain and the UTM. And as long as we stick to the conventional model of computation,
we will never be able to break out of this illusion.

Therefore, we seem to have proved that Free Will is just a black box concept, since it is impossible for us to
predict the human brain’s behaviour given our current computational model. Does this idea seem to suggest that
the brain is then, deterministic? None of the above claims seem to contradict with this new idea. The human
brain and UTMs are, after all, expressions of same amount of complexity. If a UTM can be expressed through
deterministic rules, why can’t the brain? The catch lies in, of course, the fact that we know the deterministic rules
by which the UTM runs, since we created it, but we don’t understand the rules governing our brains, since it was
nature and evolution that created it! The reader might be confused by the two claims that:

1. The Brain is deterministic.

2. The Brain cannot be predicted.

But, on a closer look, one would realise that determinism doesn’t necessarily imply prediction. If simply knowing
the rules of a system were sufficient to predict its behaviour, then we should be able to predict the output of
Conway’s Game of Life! (As established in Section 2.2, we cannot.) For the purpose of closure, take the example
of the famous Halting Problem in theoretical computer science. The halting problem is the problem of determining
whether there exists an algorithm which, given any arbitrary computer program and an instance of this program,
outputs whether the program would halt or not. This problem is deemed unsolvable by a Turing Machine, thus,
we can never predict if the input problem will halt or not, despite everything (from the rules of the TM to the
definition of the program and the instance) being deterministic.

Newcomb’s Paradox Suggested by William Newcomb, of the University of California, this paradox tells the
reader to consider the following. Say there is a supercomputer X, which is aware of all the deterministic physical
laws of the Universe, which given all the current conditions, predicts the future. Now, a human player A asks X to
pop the prediction for the output of a coin toss, which A would be executing immediately after popping up of the
prediction. Now consider whichever prediction X pops: (a) Heads (b) Tails (c) the coin stands on its sides (d) the
Player doesn’t flip the coin, etc., A defies this prediction after hearing it. [If the prediction is a, b, or c, then the
player doesn’t flip the coin, and if it is d, then the player flips it anyway.] Why was the prediction defied, despite
X being fully capable and aware of all the deterministic laws of the universe?

Franz Kiekeben, of the Ohio State University, suggests a way around this paradox. The only plausible solution
being that determinism does not imply prediction. And why? Because during the popping up of the prediction,
new information was added to the supercomputer-human system, which was not accounted for at the initial state
which was inputted in the supercomputer for its calculation.

One could feel tempted to further extend Kiekeben’s argument, and claim that this paradox of new information
within the system can be resolved, if the entity predicting the coin toss is sitting outside the system, much like
what was suggested from the lessons of Flatland and the idea of a computational class that lies higher above than
the class containing the human and the supercomputer[24].
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3.3 Uniqueness of Human Intelligence: The Travails of Triviality
In his widely popular paper titled Computing Machinery and Intelligence, Alan Turing considered the question of
“can machines think?”. However, owing to the vague definition and connotations of the word “think”, he replaced
this question by another question of “can machines pass the Turing Test?”[25] The Turing Test was essentially to
examine whether a computer program could fool an isolated investigator, to believe that it was human, by imitating
human-like behaviour, via a series of exchanges of questions and answers between the investigator and the computer.
If the computer passed the test, it would be considered intelligent, in some sense of the word.

Its practical utility brushed aside, the Turing Test has been criticised for having used the idea of human-like
behaviour as being the only form of intelligent behaviour. It considers humans to be in a privileged and unique
position, without any particular reason provided for this assumption. However, if one were to base intelligence
on the ability to understand complexity, and to solve problems of sophistication, then invoking the Principle of
Computational Equivalence would cause both human intelligence (the brain) and machine intelligence (TM) to fall
in the same category of equivalent intelligence. As a matter of fact, one could even include computations like the
weather and heredity to be as intelligent as humans. Coming to think of it, most natural systems that we observe
seem to fall into this category of high sophistication, which would imply that the level of human intelligence is a
work of mere triviality, and nothing unique to our species.

One might argue against this, by iterating and reiterating the enormous contributions (both good, and bad) of
mankind to the world. Which is why we need to re-evaluate our idea about intelligence. At the end of the day,
claiming that the weather is as intelligent as us would to the least, increase our respect for nature’s other creations
and remind us of the other beautiful and complicated things of natural occurrence, and perhaps even reduce the
root cause of our vanity and false sense of superiority as a species.

4 Computational Pragmatism
In the light of computational and biological complexity, and having studied the equivalence of classes, can we still
hope to describe and explain some of the biological systems using our current level of computational technology,
and within the limits of intractability imposed by theoretical computer science, or not? This section addresses
this important question, to reveal which scientifically relevant questions need due consideration in the face of this
argument.

4.1 Algorithmic Evolution
Daniel Dennett, an American Philosopher, spends a lot of time in his popular book Darwin’s Dangerous Idea
on describing evolution as an algorithmic process. He claims Darwin’s theory of natural selection to be like an
algorithm, and he goes on to define an algorithm on three characteristics[26]:

1. Substrate Neutrality: The procedure must be independent of the material on which it is executed, and its
power lies in its logical structure.

2. Underlying Mindlessness: Each of the fundamental steps that build the procedure must be utterly simple.

3. Guaranteed Results: It must be a foolproof recipe.

What Dennett completely misses out in his discussion of evolution as an algorithm, however, is two of the most
important properties of an algorithm as seen by computer scientists: the proof of correctness and the time com-
plexity. Dennett claims that the outcome of this algorithm could be the creation of “complex structures” that arise.
However, what is the means of describing the correctness of the working of this algorithm? How do you even talk
about whether it is giving out any “guaranteed results”? As seen in Section 2.2, evolution and heredity are more
like computations of high sophistication, with potential algorithms of very high complexity. Which means it is
unlikely we would ever be able to comment on what exactly this computation is computing, in all of its entirety.
Darwin’s theory of evolution gives a macro perspective on this computation, hinting at the prospective objective of
this computation to be the acquisition of levels of higher fitness. Advancements in the field of genetic algorithms is
looking to model small modules of the idea of evolution, looking at small sections of the phylogenetic tree, but to
be able to look at the big picture which lies at the highest level of sophistication using an algorithm, appears to be
a long shot. After all, we will greatly benefit from any such model if only we are able to make somewhat accurate
predictions from it.
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4.2 Quantum Computing: An Incomplete Answer to the Biggest Questions of Hu-
man Existence?

The reader might recall from the discussion in Section 1.2, that in the theory of computational complexity, computer
scientists have more reasons to believe that P 6=NP. Under the assumption of this inequality having maximum
likelihood of being true, we know that there is no polynomial time algorithm for problems belonging to class
NP-Hard. What are we to make of this result? That most instances of NP-Hard problems may be treated as
essentially unsolvable, given that we have finite number of resources and time in practical studies, experiments and
simulations. However, if one were to change the model of computation itself, from a deterministic one (DFA) to
a non-deterministic one (NFA), the problems in NP-Hard could then potentially be solved in polynomial time by
that new model.

This is where Quantum Computers (QCs) come to our rescue. While traditional computers are based on DFAs,
a quantum computer works on NFAs. It exploits the quantum mechanical nature and the idea of a spin of an
electron, to take probabilistic decisions to reach from one state to another. This “non-determinism”, in a certain
sense, allows quantum computers to solve certain problems in quick time. How? Consider there are 300 electrons in
the quantum computer system, and each electron can be in two states (up spin or down spin). This means that this
computer can achieve as many as 2300 states, which is almost same as the number of atoms in the visible Universe!
This possibility of strong vasts amount of information in fewer number of units is what grants quantum computers
their power (mathematically, an exponential amount of speedup!) So can quantum computers solve every NP-hard
problem efficiently?

You might recollect from past discussions that if even a single problem from the class NP-hard is solved efficiently,
it would solve all problems in class NP in poly time. Quantum computers have been shown to execute the NP-
Complete problem of integer factoring (which is what cryptographic protocol RSA is based on) in poly time.
However, unfortunately, most computer scientists have been able to find few quantum algorithms for other problems
in that class[27]. We cannot even comment if we can have a quantum algorithm for all NP-Complete problems,
which, considering that we haven’t proven that no poly time algorithms exist for NP-Complete problems, seems
believable.

In the August of 2012, the quantum computer D-Wave was able to find the lowest configuration of amino acids
and interactions, and thus “solve” the protein folding problem[28]. Although the algorithm didn’t work perfectly,
since out of 10,000 runs, it gave the right solution only 13 times. Still, this recent breakthrough gives hope to all
fields that deal with complex systems, particularly biology, that there could after all be a way to create and exploit a
piece of computation which is of sophistication higher than a standard deterministic UTM, and more sophisticated
than even the human brain or the natural wonder of evolution. They could potentially shed some light on the
eternal questions of existentialism and the meaning of being and life. Where some scientists might be conjecturing
the possibility that quantum computers cannot solve all NP-Complete problems, one must remember that the doors
of revision and correction are never shut in the scientific world. And neither is the window of imagination. Some
physicists are already considering the possibility of a computation even more sophisticated than a QC: the Ubër
Computer[27]. Based on speculative physical processes born from exotic physics, like the idea of time travel, Ubër
Computers are being speculated to be powerful enough to solve problems as complicated as PSPACE, which are
higher in complexity than even the class of NP-Complete, including problems such as Chess!
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5 In Conclusion
“The world is stranger than we think,” is in essence, what the French philosopher Sartre meant as one of the strong
points of his ideas of existentialism. As humans advance with scaling acceleration in different fields of science and
technology, we keep hitting bumps at more and more problems. Just like the further away a candle shines, the
larger we realise is the region of unknown darkness. Sometimes when we reach such barriers, like unexplained
phenomena, we try and modify our current scientific theories to fit the observed phenomena. Other times, we
disband old theories and come up with new ones. In our haste of reaching a conclusion, and wiggling out results
that make human life better, what we often ignore is the fact that we too have limits to our abilities. The world,
which we had come to know so well, could suddenly appear more stranger than ever.

This paper has tried to expose such inevitable gaps of knowledge by establishing principles of correspondence
between classes of computational complexity, and classes of biological complexity. Biological systems and life, exist
in the form of a complexity pyramid, where jumping from one lower class to a higher class could seem implausible
within our current models of computation. Also, it strengthens the notions of when problems can be reduced to
simpler ones, and when problems are just irreducible. It motivates biologists and computer scientists to join hands
on founding a new paradigm in which it would be possible to study and predict the behaviour of systems of high
sophistication, like the brain, weather, evolution, etc. This would require for us to be able to create a computational
model which resides higher than the current UTM model, and even higher than us, in the pyramid of the classes of
sophistication/complexity.

Besides the ideas of computational pragmatism in treatment of biological systems, this paper also sheds some
light on the nature of human thought, intelligence and brain. That the black box of free will is a mere illusion
which can be explained by the principles of computational equivalence and irreducibility. And that determinism of
rules may not necessarily imply prediction of a system governed by those rules. The central position that humans
appear to hold among all the creations of nature, seems to turn small and trivial when one realises that there is
nothing unique about the computational complexity of the human brain. And that we are blips in this cosmos of
complexity, yet unique in our endeavours to dream of creating systems of complexities unfathomably larger than
our own.

14



References
[1] Definition of signature of life taken from the discussion with Prof. Aditya Mittal, IIT Delhi.

[2] Erwin Schrödinger (1944). What is Life – the Physical Aspect of the Living Cell. Cambridge University Press.

[3] Crick (1966). Of Molecules and Man. Seattle, USA, University of Washington Press.

[4] Fulvio Mazzochhi (2008). Complexity in biology. European Molecular Biology Organization, Vol 1, No 1.

[5] D. Searls (1998). Grand Challenges in Computational Biology. Computational Methods in Molecular Biology,
Elsevier Science.

[6] Wikipedia page: http://en.wikipedia.org/wiki/Protein_structure_prediction#Historical_perspective

[7] Costanzo et al. (2010). Science, 327: 425.

[8] Azevedo et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically
scaled-up primate brain. J Comp Neurol., 513(5):532-41.

[9] CNET page: http://www.cnet.com/news/human-brain-has-more-switches-than-all-computers-on-earth/

[10] Gandy (1980). Barwise 1980:123

[11] Stephen Wolfram (2002). A New Kind of Science. Champaign, IL, Wolfram Media, Page 717.

[12] Pray (2008). DNA replication and causes of mutation. Nature Education 1(1):214.

[13] International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human
genome. Nature 431 (7011): 931–45.

[14] Claverie JM (2005). Fewer genes, more noncoding RNA. Science 309 (5740): 1529–30.

[15] Hector Zenil (2012). Irreducibility and Computational Equivalence: 10 Years After Wolfram’s A New Kind of
Science. Springer Science & Business Media, Page 188.

[16] Conway et al. (2001 2004). Winning Ways for your Mathematical Plays, (2nd ed.). A K Peters Ltd.

[17] Stephen Wolfram (2002). A New Kind of Science. Champaign, IL, Wolfram Media, Page 737.

[18] YouTube video featuring John Conway: https://www.youtube.com/watch?v=R9Plq-D1gEk

[19] Wikipedia page: http://en.wikipedia.org/wiki/Mathematical_and_theoretical_biology

[20] Kirschner (2005). Cell, Vol. 121, 503-504.

[21] Elements of Systems Biology as taken from discussions with Prof. James Gomes, IIT Delhi.

[22] Wooley et al. (2005). Catalyzing Inquiry at the Interface of Computing and Biology. National Academies Press:
429-435.

[23] Berger et al. (1998). Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-Complete. RECOMB:
30-40.

[24] Kiekeben’s page: http://www.franzkiekeben.com/predict.html

[25] Turing (1950). Computing Machinery and Intelligence. Mind LIX (236): 433–460.

[26] Dennett (1995). Darwin’s Dangerous Idea. Penguin Books.

[27] Aaronson (2008). The Limits of Quantum. Scientific American, Inc.

[28] Nature blog: http://blogs.nature.com/news/2012/08/d-wave-quantum-computer-solves-protein-folding-
problem.html

15


