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Abstract

Given that most bacteria are becoming resistant to antibiotics, there is an urgent need to flip our
practice of diagnosing and treating pathogen infections. Instead of exterminating the pathogen, we
must start looking at ways to make a host “tolerant” to the infection, that is, stay asymptomatic
despite infection. For that, we look at the problem of predicting tolerance, and unearthing the
underlying biological mechanisms of tolerance. We define a highly generalized and powerful Bayesian
probabilistic framework called CROM3TOP (pronounced ‘chrome-top’ ), which can feed on (possibly
temporal) multi-omics data across various host and pathogen species, to develop a rich ontology
which not only differentiates between states of tolerance and sensitivity, but also provides a valuable
interface for biologists to ask arbitrary queries of interest. This would help discover novel host-
pathogen mechanisms, and hasten the design of gene therapies and other medical interventions.
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1 Introduction

As the use of antibiotics becomes increasingly prevalent, more and more strains of bacteria have started
to show signs of resistance. In response to which even stronger antibiotics have been created, the
evolutionary selective pressures of which have given rise to yet more resistant so-called ‘superbugs’.
Clearly, the path of fighting diseases no longer lies in trying to exterminate the pathogen. Rather, it
resides in an alternative philosophy of modifying those host systems which the pathogen attacks. It is in
this spirit that we aim to discover models of tolerance in hosts, especially in Homo sapien, to pathogens.

We define tolerance as the ability of a host infected by a pathogen to not develop symptoms of the
disease caused by the pathogen (at possibly different pathogenic loads, or time instances from the point
of infection). Discovering and incorporating markers of tolerance allows us to stay asymptomatic, despite
being exposed to the disease-causing pathogen. An ideal model of tolerance must have the following
desirable characteristics. It must be:

Predictive Given sufficient data about the host and pathogen, it should be able to predict whether the
host will be tolerant or sensitive to the pathogen.

Informative The model must be rich enough to provide insightful information on critical pathways,
which can help design better drugs and gene therapies.

Elegant It should be easy to make sense of the model in the biological domain.

Complete Any arbitrary queries on the host-pathogen interaction must be answerable, even in the face
of incomplete data.

Efficient Making inferences from the model must be time (and space) efficient.

Up until now, clinical or physiological data and indirect biomarkers extracted from the blood, have
been the ‘source data’ of choice for medical practitioners to diagnose and treat a disease. Although
such data might suffice for a superficial detection of (a family of) diseases, when we wish to inquire
about more specific information, such as that related to tolerance, high-level data fall short of providing
meaningful answers. Ideally, the kind of data which would best predict tolerance is that on specific
biomolecular flows and reactions in the host-response pathway. However, there are many different ways
(spanning a range of genes, proteins and metabolites) in which a host might react to an infection, which
are yet to be entirely deciphered, yet alone understood. We must, therefore, rely on proxy sources
such as omics data (transcriptomics, proteomics, metabolomics), data on the microbiome of the
organism, and some clinical data, to approximate the true mechanism of tolerance. Since Homo sapien
eventually is the most important host of our study, it would be a good idea to collect our data from
humans. However, it is naturally easier and convenient to perform infection studies on lower organisms.
Additionally, human biological systems tend to be more complicated and lesser understood than those
of other species. Therefore, collecting such data across multiple host species, and tying them together
through known homologies, should paint a more comprehensive and complete picture of tolerance.

Furthermore, we inform our models not just by the usual training samples of hosts with known
tolerance/sensitivity, but also by a rich hierarchy of relationships between biomolecules, such as gene
regulatory interactions from GRNs, protein interactions from PPIs, metabolic and signaling pathways,
among others. Most of these publicly available interactions have been curated and validated from exper-
iments and other computational studies, and each of them can serve as distinct but related modalities
to improve the model fit.

In the following sections, we describe a probabilistic graphical model which fits the template of
tolerance. We define the model structure, methods of learning and making inferences from it, concluding
with possible challenges and limitations.
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2 Overview of Probabilistic Modeling of Tolerance

More often than not, it is natural to see a variable x of a non-deterministic system as a random variable,
that follows some probability distribution P (x). If we know P (x), we can answer a lot questions about
the behaviour of x, like its mean (or ‘most expected value’). Most systems have more than one variable
though, let us call them {x1, x2,⋯, xn}, and we can now define a joint distribution over these variables as
P (x1, x2, ⋅, sxn). Once we know P , we can ask almost any arbitrary query on the variables by finding the
appropriate marginal probability distribution. Say the variables are discrete, then if we are interested in
the joint distribution of X̂ = {x2, x5, x9} we find it by summing over all other variables

P (x2, x5, x9) = ∑
xi/∈X̂

P (x1, x2,⋯, xn) (1)

Similarly for continuous variables, the sum simply gets replaced by an integral, and the probability
distribution P by a probability density function p. Let us assume for the sake of discussion that these
variables are discrete, and can take m possible values. Therefore, the size of our probability distribution
P becomes mn − 1. Now clearly, the larger is the size of P , the more will be the number of summations
and thus the longer is the time taken for inference. Not only that, but learning larger distributions
naturally requires more data for a good fit. Can we then somehow reduce the size of the distribution?
This is where the notion of a probabilistic graphical model comes in. We consider the following. Given
two random variables a and b, we can write their joint distribution as

P (a, b) = P (a)P (b∣a) = P (b)P (a∣b)

Now, a and b are said to be independent random variables iff

P (a∣b) = P (a)

This allows us to write a simpler formula for the joint distribution, simply as the product of the marginal
probabilities, as

P (a, b) = P (a)P (b)
The right hand side of above equation is referred to as the factored form of joint distribution P . Notice
that although the joint probability has a size of mn − 1, the factored form is a product of n marginal
distributions of size m−1 each. Therefore, for n variables that can take m possible values each, if all are
independent of each other, then we get a best-case reduction in the size of distribution (or ‘number of
parameters’ of the distribution) from exponential mn to linear mn. This allows the probabilistic model
to be computationally tractable.

However, it is very rare to find that all variables are independent of one another. But, with the help
of domain knowledge, once can adjudge many conditional independencies between variables. A random
variable a may not be independent from a random variable b, but they could be independent of each
other given a third random variable c. This can be mathematically written as

a ⊥ b∣c

and the distribution can be written as

P (a, b∣c) = P (a∣c)P (b∣c) (2)

For example, sunny and humid may not be independent of each other, but given that it is rainy, they are
independent of each other. This could be equivalently interpreted as rainy influencing sunny, and rainy
influencing humid, but no relationship between sunny and humid. Such relationships between random
variables are best encoded in a graphical representation, such as that in Figure 1. This directed (acyclic)
graph is called a Bayesian Network, where the nodes of the graph are random variables, and an edge
a → b can be interpreted as an edge of directed influence or causality. If Pa(xi) denotes parents and
NonDe(Xi) denote the non-descendants of node xi, then the conditional independencies represented by
the graph can be mathematically written as

xi ⊥ NonDe(xi)∣Pa(xi)

That is given its parents, a node is independent of its non-descendants. Now, we can write the factored
form of joint distribution as

P (x1, x2,⋯, xn) =
n

∏
i=1

P (xi∣Pa(xi)) (3)
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Figure 1: A simple Bayesian network encoding conditional independencies
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Figure 2: Examples of ‘good’ and ‘bad’ network dependencies

If a node has maximum of q parents, then the number of parameters get reduced to no more than
n(mq+1 − 1). The smaller is q, the more can the dependency structure be exploited to learn from data.
For instance, in Figure 2, the first structure is better than the second. This must be taken care of
while designing the network structure.

2.1 Multimodality: towards Bayesian Networks

We’ve seen how a Bayesian network can be a very compact representation of our feature space. Let us
now formally describe how we can define the structure of this representation for the problem at hand,
which is to find a model of tolerance. We define tolerance as a random variable λ ∈ {0,1}, and the
manifestation of it in the form of various biological modalities A = {a1, a2,⋯, an} ∈ Rn. For instance,
an infection can cause over/underexpression of some proteins like signalling molecules in the cell, which
can induce regulation of certain genes that in turn release proteins essential to an immunity response.
Moreover, the microbiome of the host organism can be directly affected by the pathogen infection, and
also by immune proteins. Together, the two can affect some key biochemical reactions which occur in
the body, therefore changing metabolite concentrations. Another important modality, often used as a
proxy for medical diagnosis of tolerance, are the vitals of the organism like heartbeat and oxygen in the
blood. (See Figure 3 for a succinct picture.) In terms of data modeling, we call these modalities the
features of our model. Thus in all, we have a rich multimodal dataset D = {λi,Ai}mi=1 collected from m
infected hosts. This appears exactly in the template of a typical classification problem, where we are
trying to find a map f ∶ A → λ. In a probabilistic paradigm, one popular technique for classification is
the naive Bayes model (B0), whose structure is depicted in Figure 4. Clearly, tolerance influences the
‘levels’ of all biological modalities, which makes intuitive sense. Using Equation 3, the joint distribution
can be written as

P (λ, a1, a2,⋯, an) = P (λ)
n

∏
i=1

P (ai∣λ) (4)

However, what we wish to find host tolerance given modality data, or P (λ∣D). We can do that using
Bayes’ Rule

P (λ,D) = P (λ)P (D∣λ) = P (D)P (λ∣D)

⇒P (λ∣D) = P (λ)P (D∣λ)
P (D)

⇒P (λ∣D) = P (λ)P (D∣λ)
∑λ P (λ,D)

⇒P (λ∣D) = P (λ)P (D∣λ)
∑λ P (λ)P (D∣λ)

(5)

Wherein P (λ) is called the prior probability (of tolerance), P (D∣λ) is called the likelihood and
P (λ∣D) is called the posterior probability[1]. Therefore given the right-hand-side of Equation 5, we can
easily infer the tolerance of a new host. However, note the conditional independencies encoded by this
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Figure 3: A high-level cartoon of relationships between multiple biological modalities, which can be
affected by a pathogenic infection

λ
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⋯

Figure 4: A naive Bayesian representation B0 for the tolerance model

structure. Given the state of tolerance λ, every biological modality is independent of each other, which
is in gross violation of all our biological understanding.

Let us use some domain knowledge to produce a biological interaction network, which better encodes
the senses of influence and independence, like in Figure 5. Note that one key requirement of this network
is that it should be a directed acyclic graph, or DAG. Let us now append other key variables of our
model: λ, and we introduce variables for the pathogen, namely the pathogen type η which belongs to
the discrete space of pathogens, and the amount of viral load ξ ∈ R. One could assume that each of
these would directly affect every biological modality. We know end up with a Bayesian network graph
B1 which looks like that in Figure 6.

2.2 Crossmodality: towards Transfer Learning through Hierarchical Bayes

We have already considered multiple species of pathogen which could infect the host, against whom
the model of tolerance is being built. However, it would also be interesting to model multiple host
organisms together, so that their individual models could ‘learn more’ from across each other through
shared representations. This subfield of learning across domains is called transfer learning in machine
learning literature[3]. Say we have K host types, each with their own set of biological modalities Ak.
Now some of these modalities are (functionally, if not physically) common across hosts, particularly all
metabolites, some (homologous) proteins, and few (homologous) genes. Let Ashared = ⋂kAk be the set of
common modalities, and Aall = ⋃kAk be the set of all modalities. For every host, we define an extended
feature set such that the feature space for all hosts spans Aall. Say we have m samples, then for every
sample corresponding to the kth host, there are in some sense ∣Ak −Ashared∣ number of incomplete data
values in this space. On the other hand, every sample of every host has complete values for ∣Ashared∣
number of features.

For this space, we can define a Bayesian network representation as shown in Figure 7. The parameter
θ describes the host species, and directly influences all the biological modalities. Notice that we have
actually defined here a hierarchical Bayesian model, with a parameter ρ that defines the probability
distribution of θ, and hyperparameters α, k that define the distribution of itself. This permits a deeper
sense of parameter tying, and induces more knowledge transfer across domains.

2.3 Temporality: towards Dynamic Bayesian Networks

More often than not, tolerance is not an absolute state of the organism, and evolves with time. Say when
hosts get infected by a pathogen, they all may show signs of tolerance for a few hours. But then, things
begin to diverge when some hosts suddenly become sensitive to the infection and develop symptoms of
the disease, while others don’t. Therefore to create a full model of tolerance, it is crucial to make the
model temporal. Fortunately, it is straightforward to extend Bayesian networks to this setting, using
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a2a1 ⋯ ai

b1 b2 ⋯ bj

⋱

c1

d1 d2 ⋯ dj

Figure 5: A biological interaction network, across various modalities, represented as a directed acyclic
graph (DAG) where a node could represent any of the biological entities mentioned in Figure 3, as long
as the graph has no self-loops and cycles

λ η ξ

a2a1 ⋯ ai

b1 b2 ⋯ bj

⋱

c1

d1 d2 ⋯ dj

Figure 6: Incorporating multimodality The biological interaction network is represented as a
Bayesian network B1, with λ being a random variable for tolerance, η that of pathogen type, and ξ
that of pathogen load, with the assumption that they directly ‘influence’ every node in the directed
interaction network
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Figure 7: Incorporating crossmodality A Bayesian network representation B2 spanning multiple host
species, with the random variable θ indicating host species, and a hyperparameter ρ over θ. Note that
some biological nodes (ai, bj , c

1
1, dj) are shared by the hosts, which can be used to induce a transfer of

learning across multiple species.

a

λ η ξ

δ γ

Nk

Tk

(a) B1
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(b) B2

Figure 8: Plate notation to concisely describe the dynamic Bayesian models, with occluded biological
interactions amongst a, and persistence variables: λ, a
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dynamic Bayesian networks or DBNs. Essentially, a DBN encodes not only the standard equitemporal
conditional independences, but also intertemporal ones.

Now, every variable X is actually a template variable Xt, whose value is instantiated at some times-
tamp. Consider a distribution over a ‘trajectory’ of the template random variables in feature space
X.

P (X0∶T ) = P (X0)
T−1

∏
t=0

P (Xt+1∣X0∶t)

This distribution can get very complex for a large T . We can compact this representation by making a
reasonable assumption, that given the present state, the future is independent of the past. This is called
the Markovian assumption. Given it holds, we can write the above equation as

P (X0∶T ) = P (X0)
T−1

∏
t=0

P (Xt+1∣Xt)

But what if T is undefined, possibly even infinite? We can still come up with a compact representation
if another assumption of the ‘Markov chain’ holds true, that it is stationary or time-invariant. This
assumption says that ∀t, P (Xt+1∣Xt) is the same. We can thus define a transition model P (X ′∣X), which
along with the initial probability distribution P (X0), completely describe the entire model. Interface
variables XI are those whose value at time t have a direct effect on variables at time t+1. For our tolerance
model, it makes sense to include the tolerance state as an interface variable. We could also include every
biological modality in this set, although that would induce many dense connections, which looses out
on the compactness of our representation. Let us further (safely) assume that every biological modality,
and tolerance variable, influences only its own future state directly. Such variables are called persistent
variables. Therefore, we define all our interface variables to be persistent, to capture trajectories very
succinctly. The final Bayesian representations have been drawn in Figure 8.

2.4 Modularity: towards Structure Learning in Bayesian Networks

Up until now, we have assumed that the state of tolerance and pathogen, which we can phenomenally
term as the “infection”, affects every biological modality directly. However we know that this is not
entirely true. A pathogen infection is responded to often in stages, by different sets or modules of
biological entities (modalities here). Most curated biological databases give us a an idea of how the
modalities are interrelated, but not of how they group together during host response. Therefore, we
also incorporate a computational approach to automatically learn proxy-modules which, by definition,
improve the predictive power of our model. These may not have a one-to-one correspondence to real
biological subsystems, but this can only be (un)confirmed in hindsight of employing the model.

We hypothesize a layer of hidden variables H = {h1, h2,⋯, h∣H ∣} sandwiched by the “pathogen in-
fection” variables (λ, η, ξ) and “host response” variables (θ,A = {a1, a2,⋯, a∣A∣}). See Figure 9 for the
Bayeisan network structure. The introduction of hidden variables can greatly simplify the structure,
reducing complexity of the network which needs to be learnt[2]. For example, if we quantify the number
of modality parameters involved in the non-modular B2 versus modular B3 Bayesian representations (see
Table 1), they are as follows:

∣φB2 ∣ = ∑
a∈A

((Pa(a) + 2).(∣θ∣∣η∣∣λ∣ − 1) + 1)

∣φB3 ∣ = ∑
a∈A

((Pa(a) + 2).(∣θ∣ − 1) + 1) + ∑
h∈H

(2.(∣η∣∣λ∣ − 1) + 1)
(6)

By a rough approximation, especially if ∣H ∣ ≪ ∣A∣ we find that:

∣φB2 ∣ ≈
∣η∣∣λ∣

1 + 2

2 + Pa(a)
∣η∣∣λ∣
∣θ∣
∣H ∣
∣A∣

∣φB3 ∣ ≈ ∣η∣∣λ∣∣φB3 ∣ (7)

Therefore it might be a good idea to go ahead with this modular design. However, how do we define the
number of hidden variables, and to which biological modalities they are connected? This can be achieved
through another step of learning, wherein the graph structure G of the Bayesian network itself is variable.
If we can define a space of structures, then one could write something similar to Equation 5 and find
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Figure 9: Incorporating modularity This Bayesian network representation B3 introduces a hidden
variable layer between the pathogen and host variables. Note that every biological modality has a single
hidden modality parent.

the “best” graph structure Ĝ by taking a MAP (Maximum a Posteriori) estimate in this meta-Bayesian
problem:

P (G∣D) = P (G)P (D∣G)
P (D)

Ĝ = arg max
G

P (G∣D)
(8)
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3 Pragmatics of the Bayesian Network Model

We now formally describe some key ideas and algorithms for pragmatically employing the model described
above, spanning representation and parametrization, parameter learning, and (approximate) inference.

3.1 Representation and Parametrization

3.1.1 Independencies encoded by a Bayesian Network

As described above, Bayesian networks are a compact representation of the joint probability distribution
P by directly encoding its conditional independencies which allows us to decompose the distribution
locally at every node, conditioned on its parents. Let us denote the BN graph structure by G. We
define I(P ) to be the set of all independence assertions of the form (X ⊥Y∣Z) that hold in P . A graph
object K with a set of independencies I(K) is said to be an I-map for a set of independencies I if
I(K) ⊆ I. Thus, we say that G is an I-map for P if it is an I-map for I(P ). If G is over variable space
X = {X1,⋯,Xn} then the distribution P over X is said to factorize over G if we can express it as a
product of individual factors called conditional probability distributions:

P (X1,⋯,Xn) =
n

∏
i=1

P (Xi∣PaG(Xi)) (9)

Thus, a Bayesian network is a pair B = (G, P ) where P factorizes over G. Also, if G is an I-map for P ,
then P factorizes over G. The converse holds true as well[2]. The resulting factored representation can
be substantially more compact, especially for sparse structures with small indegrees. Now clearly, there
are many possible structures that are consistent with the same set of independencies (since we can have
various G′ such that I(G′) ⊆ I(P ), particularly a fully connected graph being an I-map for every P ). It
is practically a good idea to choose structures that reflect some causal order, where causes are parents
of effects, since there is a local influence in the real world and because causal graphs tend to be sparser.

Note that the set of “local” independencies Il(G) described above are not the only ones which can
be read off of G, and there are some “global” independencies as well. For that, it is useful to view
probabilistic influence as a flow in the graph, and we try to analyze when influence can flow from X
through Z to affect our beliefs about Y . We define a trail to be a walk from a node to another, irrespective
of the direction of edges, but without any loops. Say X1 
 ⋅ ⋅ ⋅ 
 Xn be a trail in G, and Z a subset
of observed variables. The trail X1 
 ⋅ ⋅ ⋅ 
 Xn is active given Z if whenever there is a “v-structure”
Xi−1 → Xi ← Xi+1 then Xi or one of its descendants are in Z and no other node along the trail is in Z.
Now, let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated given Z if there is
no active trail between any node X ∈ X and Y ∈ Y given Z. This set of independencies can be written
as:

I(G) = {(X ⊥Y∣Z) ∶ d − sepG(X;Y∣Z)} (10)

We also have that if P factorizes over G, then I(G) ⊆ I(P ). That is, if X and Y are not d-separated
given Z in G, then X and Y are dependent in all distributions P that factorize over G. This notion of
d-separation is key to infer independence properties of a distribution P that factorizes over G by simply
examining the connectivities in the latter. Alternately, if we know these independencies in P , then it
can help us pick a better structure G. Now, many structures can encode the same set of independencies
I(G), which makes them I-equivalent, like in Figure 10. A theorem which captures this concisely says
that for two structures G1 and G2 over X , if they have the same skeleton (the underlying structure with
dropped directionality of edges) and the same set of v-structures, then they are I-equivalent. Thus, we
could choose any of these I-maps as possible structures for P . However, going ahead with the sparsity
intuition, we define the notion of a minimal I-map. A graph K is a minimal I-map for P if it is an
I-map for P and if the removal of even a single edge from K renders it not an I-map. We can now devise
a procedure for creating an I-map. Given a determined (topological) variable ordering {X1, . . . ,Xn}, for
each Xi select a minimal subset U of {X1, . . . , xi−1} to be parents of Xi in G, such that

Xi ⊥ {X1, . . . ,Xi−1} −U∣U (11)

Although in our model of tolerance, we already pick up the graph structure from curated biological inter-
action networks, this notion of minimal I-maps can be used to validate and prune those structures further.
However, one challenge which remains is that of extracting dependencies of the kind in Expression 11
from P . We come back to this after describing our parametrization of the joint distribution.
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Figure 10: Three I-equivalent graph structures for the conditional independency X ⊥ Y ∣Z

Variable Description Discrete Distribution

λ Tolerance Yes λ∣δ ∼ Bernoulli(1, δ)
η Pathogen type Yes η∣γ ∼ Categorical(γ)
ξ Pathogen load No ξ∣η ∼ N (βη, σ2)
θ Host Yes θ∣ρ ∼ Categorical(ρ)
ρ Parameter for θ No ρ∣α, k ∼Dirichlet(α, k)

For Non-modular Bayesian Model B2

ai Biological modality No ai∣λ, η, θ, ξ, Pa(ai) ∼ N (β0
ληθ + β

ξ
ληθξ + β

1
ληθb1 + ⋅ ⋅ ⋅ + β

j
ληθbj , σ

2)
For Modular Bayesian Model B3

hi Latent modality No hi∣λ, η, ξ ∼ N (β0
λη + β

ξ
ληξ, σ

2)
ai Biological modality No ai∣θ, hai , Pa(ai) ∼ N (β0

θ + β
hai
θ hai + β1

θb1 + ⋅ ⋅ ⋅ + β
j
θbj , σ

2)

Table 1: Probability distributions for variables of the (atemporal) Bayesian model

3.1.2 Parametrizing the Probabilistic Model

Table 1 provides a succinct overview of the variables and parameters of the model, and the hypothesized
distributions they follow. Note that all continuous data is normalized to zero mean and unit variance.
We elaborate on each of them below:

• Tolerance, which is the primary variable of interest, is a Boolean variable λ ∈ {0,1} following a
Bernoulli distribution parametrized by δ ∈ [0,1]

P (λ = 1) = δ

• Pathogen type is a discrete variable η ∈ {p1, . . . , p∣η∣} where pk is some pathogen species like E.
Coli, following a Categorical distribution parametrized by γ = {γ1, . . . , γ∣η∣} where ∀k ∶ γk ∈ [0,1]
and ∑∣η∣k=1 γk = 1

P (η = pk) = γk

• Pathogen load is a continuous variable ξ ∈ R following a univariate Normal distribution parametrized
by βη ∈ R (given η) and σ ∈ R

p(ξ = x) = 1√
2πσ2

e−
(x−βη)2

2σ2

• Host is a discrete variable θ ∈ {s1, . . . , s∣θ∣} where sk is some host species like Homo sapiens,
following a Categorical distribution parametrized by ρ = {ρ1, . . . , ρ∣θ∣} where ∀k ∶ ρk ∈ [0,1] and

∑∣η∣k=1 ρk = 1
P (θ = sk) = ρk

• ρ, the parameter for θ, is a multivariate continuous variable following the Dirichlet distribution
parametrized by α ∈ R+k and k = ∣θ∣ where k ≥ 2

p(ρ = x) = 1

B(α)

k

∏
i=1

xαi−1
i

11



Note that choosing different αs for every host species parameter can be done with another hy-
perparametrization to, say, a uniform distribution which might induce further parameter tying.
However, we restrict to the simpler symmetric Dirichlet distribution, where the same α is selected
and used.

• Modalities, latent or biological, are continuous variables ai ∈ R which are a linear Gaussian of
their continuous parent variables PaC(ai) conditioned on their discrete parent variables PaD(ai),
parametrized by β0 ∈ R,{βj ∈ R}∣Pa

C(ai)∣
j=1 and σ ∈ R

p(ai = x∣PaC(ai), PaD(ai)) =
1√

2πσ2
exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

⎧⎪⎪⎨⎪⎪⎩
x −

⎛
⎝
β0 +

∣PaC(ai)∣

∑
j=1

βjPaCj (ai)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

2

2σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.1.3 Gaussian Bayesian Network

Although Gaussian is a strict assumption on the continuous variables (pathogen load, latent modalities
& biological modalities) and we can choose a more generic distribution from the family of exponentials
like the Gamma distribution, we employ it primarily due to two reasons. First, it often approximates real
datasets sufficiently well, especially considering that we are most interested in “mean shifts” of biological
modalities during host-pathogen interactions. And second, because the mathematics for a Gaussian BN
works out elegantly, with the number of parameters being as few as quadratic in the number of variables,
making learning and inference simpler and more efficient in a complex setting such as ours.

In the hybrid Bayesian setting, wherein we have both discrete as well as continuous variables, one can
imagine an assignment to the discrete variables as a “switching” of the BN to a particular state, within
which we now have the continuous variables that vary. Consider one such assigned state of the BN,
wherein we can ignore the discrete variables for now and focus on the network of continuous variables.
Since all of them follow the linear Gaussian distribution, we call this a Gaussian Bayesian Network
BN with structure GN .

For Y which is a linear Gaussian of its parents X1, . . . ,Xk, we have p(Y ∣X) = N (β0 + βTX;σ2).
Assuming that X is a joint Gaussian, that is, X ∼ N (µ,Σ), then the distribution p(Y ) is normal where
Y ∼ N (β0+βTµ, σ2+βTΣβ), and the joint distribution p(X, Y ) is normal with Cov(Xi, Y ) = ∑kj=1 βjΣij .
From here, it’s straightforward to induce that a linear Gaussian BN defines a joint distribution over the
entire space that is a multivariate Gaussian. (Note that while the distribution over continuous variables
given an assignment to discrete ones is a multivariate Gaussian, in general it is simply a mixture of
multivariate Gaussians, with the number of mixture components being exponential in number of discrete
variables weighted by their respective prior probabilities.)

It makes sense to look more carefully at a multivariate Normal distribution over X1, . . . ,Xn as
X ∼ N (µ,Σ) where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is the symmetric covariance matrix
that is positive definite (∀x ∈ Rn such that x ≠ 0, we have that xTΣx > 0 for a well-defined density that
integrates to 1)

p(X = x) = 1

(2π)n/2∣Σ∣1/2
exp [−1

2
(x −µ)TΣ−1(x −µ)]

There as an alternate representation for the multivariate Gaussian, which expresses inverse of the co-
variance matrix as the “information matrix” J . The exponent term now becomes

−1

2
(x −µ)TΣ−1(x −µ) = − 1

2
(x −µ)TJ(x −µ)

= − 1

2
(xTJx − 2xTJµ +µTJµ)

∝− 1

2
xTJx + (Jµ)Tx

(12)

Now we are interested in primarily two kinds of operations for the purpose of learning and inference:
marginalizing out a distribution and conditioning a distribution. Say we have a joint distribution over
{X,Y } Then we can rearrange the mean vector and covariance matrix of the joint such that

p(X,Y ) = N ((µX

µY
) , [ΣXX ΣXY

ΣY X ΣY Y
])
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Then the marginal distribution over Y is simply N (µY ,ΣY Y ). While for the distribution conditioned
on a set of variables Z, we can simply use the information form in Equation 12, where the values of
variables in Z are set appropriately.

Another key idea which we can read off of the Gaussian distribution is the independencies it encodes.
For any two Xi,Xj ∈ X where X ∼ N (µ,Σ), we have Xi ⊥ Xj iff Σij = 0. Additionally and more
interestingly, the information matrix provides us insight into conditional independencies. The following
holds: Xi ⊥ Xj ∣X − {Xi,Xj} iff Jij = 0. That is, given everything else, we know which two nodes of
the network are independent of each other. Here, we come back to the notion of minimal I-maps, since
we can read off independencies of the kind in Expression 11 in Section 3.1.1, from J . We can define
the Markov blanket of a variable (node) X in BN graph structure G, MBG(X), as X’s parents, X’s
children, and the parents of X’s children. The Markov blanket d-separates X from everything else in the
network, in some sense “shielding” it from external probabilistic influence. Thus, for all nodes Xi,Xj

with entries Jij = 0, they are definitely not in the Markov blankets of one another.

3.1.4 State-observation Model for Dynamic Bayesian Networks

All the discussion above has been on atemporal Bayesian networks. While these ideas remain the same
for DBNs as far as describing the initial distribution P (X0) is concerned. To define the transition model
P (X ′∣X), we must first interpret the DBN as a state-transition model. For every observed template
variable Xi, we assume it to be a hidden variable (or state) and generate its corresponding observed
template variable (or observation) Oi, joining them by a directed edge Xi → Oi. Now our model has
two components, the usual transition model P (X ′∣X) and the observation model P (O∣X). We can
parametrize them for the continuous interface variables (modalities) by:

P (Xt∣Xt−1) = N (AXt−1,Q)
P (Ot∣Xt) = N (HXt,R)

(13)

where A and H define linear transition and observation models respectively, and Q and R are corre-
sponding Gaussian noises. This is referred to as a Kalman filter[13]. For the only discrete interface
variable, tolerance, we can define a simple (valid) probability transition function f ∶ B ×B→ [0,1]. This
combination of discrete and continuous variables in a temporal setting is often referred to as a switching
linear dynamical system.

3.2 Learning the Bayesian Model

3.2.1 Parameter Estimation with Complete Training Data

The problem of parameter estimation is essentially that of “learning” the conditional probability distri-
butions (CPDs), such as those listed in Table 1. In practice, the amount of data we have, especially with
respect to a high-dimensional variable space, is rarely sufficient to learn an accurate representation of
the entire space. Thus instead, we try to estimate a “best approximation” P̃ to the actual P , the notion
of “best” depending on our learning and inference goals. This bias-variance trade-off underlies many
of our design choices in learning. When selecting a hypothesis space of different models, we must take
care not to allow too rich a class of possible models. Indeed, with limited data, the error introduced
by variance may be larger than the potential error introduced by bias, and we may choose to restrict
our learning to models that are too simple to correctly encode P [2]. Although the learned model is
guaranteed to be incorrect, our ability to estimate its parameters more reliably may well compensate for
the error arising from incorrect structural assumptions.

This trade-off is often seen when comparing discriminative to generative modeling. While the
former tries to approximate to the conditional distribution P (Y ∣X), the latter approximates to the joint
P (X,Y ). Now clearly, the discriminative model makes assumptions of independence only on Y , while
generative on both X and Y . Since the latter defines P̃ (X,Y ), it induces both P̃ (Y ∣X) and P̃ (X)
simultaneously, while the former must only fit P̃ (Y ∣X) well. Thus although generative models have a
higher bias, they help regularize the model, thereby reducing its ability to overfit to data, making it
more useful when limited data is available. On the other hand, as the amount of data grows, the bias
imposed can dominate the error of learning, which is when discriminative models become more useful.

Say we are given a complete (no missing values) training dataset D = {X i}Mi=1 on the variable space,
which is what we use to learn the model parameters φ. We define the likelihood function as the probability
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which the model assigns to our data, assuming every data point is an independent identically distributed
(IID) variable:

L(φ ∶ D) =∏
m

P (Xm∣φ)

We can now define the problem of parameter estimation as finding φ which maximizes this likelihood,
referred to as maximum likelihood estimation or MLE:

L(φ̂ ∶ D) = max
φ∈Φ

L(φ ∶ D) (14)

In the context of Bayesian networks, because the distribution decomposes into local distributions at
every node, we can easily estimate parameters for every child node, given its parents. This property is
called the global decomposition of likelihood function, and implies that we can maximize each likelihood
function independent of rest of the network, and combining them for the MLE solution.

L(φ̂ ∶ D) = max
φ∈Φ

∏
i

Li(φXi∣Pa(Xi) ∶ D)

=∏
i

max
φ∈Φ

Li(φXi∣Pa(Xi) ∶ D)
(15)

Intuitively enough, for discrete variables of our model, MLE is nothing but the usual probabilistic adage
of “number of favorable outcomes upon the total number of outcomes” Say we have PaG(Xi) = {Uj}kj=1

then:

φXi=x∣U1=u1,⋯,Uk=uk =
∑m 1{Xmi == x,Um1 == u1,⋯,Umk == uk}

∑m 1{Um1 == u1,⋯,Umk == uk}
(16)

where 1{Y == y} is the indicator function that outputs 1 if assignment of Y is y, else 0. For the
conditional linear Gaussian distribution, this amounts to solving a system of linear equations. These are
referred to as sufficient statistics. Now, say we have P (X ∣U) = N (β0 + β1U1 +⋯ + βkUk, σ2) then we
can solve for MLE parameters φX ∣U = ⟨β0, β1,⋯, βk, σ⟩ as:

ED[X] = β0 + β1ED[U1] +⋯ + βkED[Uk]
CovD[X,Ui] = β1CovD[U1, Ui] +⋯ + βkCovD[Uk, Ui]

σ2 = CovD[X,X] −∑
i,j

βiβjCovD[Ui, Uj]
(17)

Note that some of the parameters in the model have hyperparameters (we can introduce as many as we
like), which take parameters to be as random variables with a prior distribution P (φ). This allows us
to not take a mere point-estimate of the “best parameter”, rather maintain a belief about φ’s values,
and use these beliefs to reach conclusions. For this, we can write the probability of parameters akin to
Equations 5 and 8

P (φ∣D) = P (φ)P (D∣φ)
P (D)

(18)

Now, maximizing this quantity gives us the maximum a posteriori or MAP estimate (assuming prior
probabilities are locally decomposable as well, and noting that P (D) is independent of φ):

L(D ∶ φ̂) =∏
i

max
φ∈Φ

Li(φXi∣Pa(Xi) ∶ D)P (θXi∣Pa(Xi)) (19)

If we convert this into log-likelihood, then we can see how the prior acts almost as a regularizer on the
likelihood, which constrains the model and makes it more useful in the limit of sufficiently available data

log(L(D ∶ φ̂)) =∑
i

max
φ∈Φ

log(Li(φXi∣Pa(Xi) ∶ D)) +∑
i

max
φ∈Φ

log(P (θXi∣Pa(Xi)))

However, we still had to reduce our parameters to some new, although more appropriate, point-estimate.
We can skip that entirely, by doing a full-Bayesian analysis over the parameter space, by averaging over
it. That is, say to infer about an entirely new test data point X ′, and using that in the meta-Bayesian
network φ→ {X}mi=1 all data points are d-separated given the parameters φ, we can do the following:

P (X ′∣D) = ∫ P (X ′∣D, φ)P (φ∣D)dφ

= ∫ P (X ′∣φ)P (φ∣D)dφ

= EP (φ∣D) (P (X ′∣φ))

(20)
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The downside of full-Bayesian learning is that it is often difficult to compute such integrals in closed-
form, and in a computationally efficient manner. If the posterior distributions P (φ∣D) are in the same
family as the prior probability distribution P (φ), then the prior is called a conjugate prior for the
likelihood function P (D∣φ). For example, the Gaussian family is conjugate to itself, with respect to a
Gaussian likelihood function: if the likelihood function is Gaussian, choosing a Gaussian prior over the
mean will ensure that the posterior distribution is also Gaussian. Similarly for discrete distributions,
a Beta distribution is the conjugate prior for Bernoulli, and the Dirichlet distribution for Categorical
(hence used in Table 1). A conjugate prior is an algebraic convenience, giving a closed-form expression
for the posterior. Furthermore, conjugate priors give intuition by transparently showing how observing
D “updates” the distribution on φ.

Note that for Dynamic Bayesian networks, the parameters for discrete variables (namely tolerance
here) can be straightforwardly estimated using aggregate sufficient statistics, that is by pooling the suf-
ficient statistics across the unrolled (grounded) Bayesian network. However for the continuous variables,
when we are in the realm of Kalman Filters, although estimation can be done in a closed form it is too
complicated to be discussed here. The reader is referred to [14] for more.

3.2.2 Parameter Estimation with Incomplete Data for Crossmodality

Recall the extended feature space (Aall) model described in Section 2.2. Since every training/testing
data point would be derived from only one species, we have “missing” data features for each of them.
In particular, εk = ∣Ak −Ashared∣ number of incomplete features for the kth species. Now this situation
can be handled straightforwardly at the time of inference, by considering the query over a probability
distribution which is marginalized over missing features.

However, we run into a problem during parameter estimation. Since the likelihood function would
now be a sum over all possible joint assignment to the missing features, it loses its critical property
of decomposability. Which implies that we also cannot expect to maximize the overall likelihood by
maximizing them independently at every node. Additionally, the number of joint assignments is expo-
nential in the number of missing values εk, which would likely be a very large number indeed. Thus
eventually, it becomes necessary to come up with some estimate of these missing values, to retain the
nice properties of decomposable CPDs which we earlier enjoyed. One popular algorithm to do this is
called the expectation-maximization or EM algorithm. The intuition behind EM is to start with a
“rough” estimate of the parameters of the model, and then through an iterative procedure, keep improv-
ing the actual likelihood estimates by trying to optimize over a simpler “expected” likelihood function.
This is done by iteratively interleaving between the E-step of inferring missing values assuming correct
parameters, and M-step of parameter estimation by assuming fully observed feature values.

Unfortunately, there are some problems with EM. Due to the convexity of the likelihood function,
it generally converges to a local maxima, than a global one. Even if one tries to resolve this using
simulated annealing or other stochastic strategies, it present issues in a high-dimensional setting such
as ours. When number of dimensions D is much larger than sample size N (N ≪ D) then EM offers
no theoretical guarantees of convergence, unless there are careful sparsity constraints on the model[15].
Therefore, we depart from an EM setting, towards that of transfer learning.

There are multiple ways to transfer knowledge across domains, namely[3]:

1. Instance-transfer, wherein we re-weight data in the source domain (other species) for using it in
the target domain (the species of interest).

2. Feature-representation transfer, in which we find a “good” shared representation that reduces
the difference between source and target domains.

3. Parameter-transfer, wherein we discover shared parameters or priors between the two domains.

4. Relational-knowledge-transfer, in which maps of relational knowledge are built.

We employ a composition of the first three flavors of transfer learning in our model. Let us describe
these ideas starting with the third one, up to the first:

Priors on Host Species As seen in Figure 8 where we have the variable θ that represents the species
category, the probability distribution on it, P (θ), is itself parametrized not by fixed values, but by
another random variable ρ. That is, instead of evaluating point estimates of the species to which
the data belongs, we maintain a belief over the space of species. This deeper sense of parameter
tying aids in parameter-transfer flavor of transfer learning.
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Finding a shared low-D space for Data Recovery using mDRUR Most natural high-dimensional
datasets, with or without missing values, tend to lie on a low-dimensional manifold with very few
degrees of freedom (see Figure 11). Thus, if we are able to find the underlying manifold of our data,
we can map from this low-D space back to the original high-D space, hence “filling in” for missing
values in the data. In the transfer learning setting, we make the assumption that this low-D space
is a shared representation, from which the data of all species arises.

This problem setting combines two popular problems in data analysis and linear algebra: nonlinear
dimensionality reduction (or manifold learning) and the matrix completion problem. In [10], the
authors suggest a method for missing data recovery through dimensionality reduction with unsu-
pervised regression, or mDRUR. Say N data points in high-D space are Y ∈ RD×N , to be mapped
to a low-D manifold X ∈ RL×N . The maps are given by f ∶ X → Y and F ∶ Y → X. Referring to
missing data features as Y0, we must return the values of X, Y0, and the maps f , F . We do this in
an EM-style algorithm, where assuming some maps, we first minimize the “reconstruction error”

E(X,Y0) = ∣∣Y − f(X)∣∣2 + ∣∣X − F (Y )∣∣2 + λf ∣∣f ∣∣ + λF ∣∣F ∣∣

(which can be seen as the unfolding of an autoencoder) with respect to unknowns X and Y0. Then,
assuming correct X and Y0, we find the maps by assuming they have some parametric forms, say
linear maps like Y = f(X) = AX + a and X = F (Y ) = BY + b, and thus solving these two linear
regressions. We then iteratively refine these estimates to convergence. There are certain practical
considerations of the algorithm, like a good initial estimate of X, which could be found by some
simple missing value imputation on Y and then applying a spectral method like PCA, or a simpler
dimensionality reduction method like random projections. Also, we can choose more complicated
kernels rather than simple linear mappings. But in all, mDRUR has been shown to be successful
in recovering missing data with very high number of missing values, even as much as 50% values
missing in a high-D setting.

Therefore, appending a step of mDRUR on the modalities will allow us to perform regular param-
eter estimation and inference in the fully-observable data setting, where CPDs are decomposable.
A point of consideration here, which needs empirical testing, is whether the states of tolerance
and intolerance are identified by two different manifolds, or the same manifold. Al-
gorithmically, this would mean that we either divide the dataset by tolerance labels (and perhaps
other labels like the pathogen type) and run separate mDRURs, or apply it on the entire aggregate
dataset by disregarding the labels. Additionally, a parameter which would require tuning based on
the log-likelihood score, is the manifold dimension L.

Boosting for Instance Weighting Although mDRUR is likely to improve the initial estimates of Y0

and escape local minimas, it may not be a good idea to completely trust the training instances
obtained from another species, for the species of interest, with very high confidence. In other words,
we can weight cross-species training instances appropriately, for more accurate transfer of learning.
One such technique, in the supervised learning setting, is called TrAdaBoost[8]. Based on the
principle of boosting, developed as AdaBoost as explained in [9], TrAdaBoost trains a classifier on
an aggregate weighted cross-domain dataset, and iteratively updates weights of training instances
depending on how they minimize the training error on the target domain dataset. In this sense, it
(down)upweights those cross-domain instances which are very (dis)similar to the target domain.

Let the training instances be Dt = {(Xi, Yi)}∣Dt∣i=1 from the target domain and Do = {(Xi, Yi)}∣Do∣i=1

from other domains. Note that in TrAdaBoost, we are in the supervised setting, so we must
manipulate our Bayesian Model as following. Since we want to optimize our training procedure for
predicting tolerance, we consider it to be the output label Y ∈ {0,1} of this classification problem,
X to be all other variables of the model, where f ∶ X → Y , and P (Y ∣X) as the confidence of
classification and hence our predicted hypothesis H ∶ X → [0,1]. Let us define the aggregate
dataset, with target instances indexed first, as D = Dt∪Do. Given an estimate of the weight vector
at iteration t as wt ∈ R∣D∣, maximum number of iterations N , we can:

1. Train the Bayesian model by using weighted sufficient statistics, a modified version of Equation
16 given by:

φXi=x∣U1=u1,⋯,Uk=uk =
∑mwtm1{Xmi == x,Um1 == u1,⋯,Umk == uk}

∑mwtm1{Um1 == u1,⋯,Umk == uk}
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Figure 11: A dataset where the letter A has just been scaled and rotated across different samples, and
thus has only 2 degrees of freedom, which the low-dimensional manifold on the right captures well.
Source: Wikipedia entry on Nonlinear Dimensionality Reduction

2. Infer Ht(X) = P (Y ∣X)
3. Define error on the target domain as

εt = ∑
{Xi,Yi}∈Dt

wti ∣Ht(Xi) − Yi∣
∑∣D∣i=1w

t
i

using which we define the parameters

βt =
εt

1 − εt
, β = 1

1 +
√

2ln(∣Dt∣)/N

and update the weight vector for next iteration as

wt+1
i =

⎧⎪⎪⎨⎪⎪⎩

wtiβ
∣Ht(Xi)−Yi∣, 1 ≤ i ≤ ∣Dt∣

wtiβ
−∣Ht(Xi)−Yi∣
t , ∣Dt∣ + 1 ≤ i ≤ ∣D∣

After applying TrAdaBoost, the crossmodal training dataset D is now tailored to be used with
the weight vector wN , for learning the Bayesian Model of a particular target species t. If we have
multiple species of interest, we can repeat this algorithm for that particular species.

The intuition behind TrAdaBoost makes sense, and further mathematical analysis on AdaBoost
reveals how boosting works. Given that the classifier (here, Bayesian Model) performs (just)
better than random (called the weak learner condition), it is mathematically provable using
the theory of VC Dimensions that the training error of AdaBoost decreases to zero very rapidly,
eventually perfectly fitting the training set[9]. Thus, it can seem to tend to overfit the data.
However, given enough training data, and if the classifier is much better than random, then the
“margins” or confidence with which it fits data greatly improves, thus avoiding overfitting. Also,
there is a sense of l1-regularization implicit to AdaBoost, whose effect weakens with more number
of iterations. Thus, an early stopping could further keep overfitting in check. Lastly, although
TrAdaBoost doesn’t always improve on AdaBoost, if the quality of distributions in the target and
cross-domains is not poor, it can greatly improve accuracy on final predictions[8].

3.2.3 Learning Hidden Layer Structure for Modularity

As discussed in Section 3.1.1, many BN structures can satisfy the set of independencies of the joint
distribution they are I-maps to. Deeper thought leads us to realise that a fully-connected Bayesian
Network will encode every possible P , and we might just learn that as the “best” structure. Indeed, this
is the result of doing an MLE on P (D∣G).

Let us define the score of a graph structure G as the log-likelihood of data when we use the MLE
parameters φ̂G given G. That is,

scoreMLE(G ∶ D) = log(P (D∣G)) = l(φ̂G ∶ D)
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Now using the definitions of likelihood and some algebraic manipulations, we can write this score as

scoreMLE(G ∶ D) =M
n

∑
i=1

IP (Xi;Pa
G(Xi)) −M

n

∑
i=1

HP (Xi)

where IP (A;B) is the mutual information between A and B under P , and HP (A) is the entropy of A
under P

HP (A) = −∑
a∈A

P (a)log(P (a))

IP (A;B) = ∑
a∈A

∑
b∈B

P (a, b)log ( P (a, b)
P (a)P (b)

)

Thus, the likelihood of the network measures the strength of dependencies betweens variables and
their parents. Notice that the second term of the score is same for all structures, while the first term
would naturally be larger for more highly-connected networks, reaching its maxima at the fully connected
network. This would obviously make training and inference intractable, and we would like to ensure some
sort of sparsity in G. This is exactly what can be done by using a prior distribution over structure space,
and taking a MAP estimate instead of MLE, as expressed in Equation 8. The score can be written as

scoreMAP (G ∶ D) = log(P (D∣G)) + log(P (G))

Furthermore, if we choose Dirichlet priors over all parameters, then we can write the score as

scoreMAP (G ∶ D) =M
n

∑
i=1

IP (Xi;Pa
G(Xi)) −M

n

∑
i=1

HP (Xi) −
log(M)

2
Dim[G] (21)

where Dim[G] refers to the number of parameters in G. Thus maximizing this score, also known as the
Bayesian Information Criterion score, gives us a nice trade-off between capturing dependencies as
well as maintaining a sparse structure.

Now, one can do structure learning in the same way as one does parameter estimation. However,
since the space of structures is superexponential in the number of nodes, and especially because we are in
the missing data regime, this will be an intractable challenge. Therefore, we need to use some heuristics
and additional constraints, to realize our modular Bayesian model. As described in Section 2.4, we need
only consider a single layer of hidden variables that is sandwiched between host and pathogen variables,
while ensuring that every biological modality has a single latent modality for its parent. This hugely
constrains the space of our structures, which can essentially be parametrized by a single variable κ = ∣H ∣,
the number of hidden nodes. Now clearly, 1 ≤ κ ≤ ∣A∣, and for a given κ we will have exactly S(∣A∣, κ)
number of assignments of hidden parents to biological modalities, where S(n, k) refers to Stirling number
of the second kind (the number of ways to partition a set of n objects into k non-empty subsets). This

gives us a total of B∣A∣ = ∑
∣A∣
κ=0 S(∣A∣, κ) number of structures, where Bn is the nth Bell number. Using

very rough upper limit for Bn, we can say

B∣A∣ ≤ ∣A∣∣A∣

which gives us an exponentially large number of possible structures in the unconstrained hidden layer.
However, using some domain knowledge about the “number of modules” possible, say κ̂, in the biological
system response, we can constrain it to just κ̂ number of hidden variables, and thus S(∣A∣, κ̂) number of
structures. Using another rough upper limit for S(n, k), we can say that

S(∣A∣, κ̂) ≤ ∣A∣κ̂

This is still potentially a very large number, because it is exponential in the number of biological modal-
ities, although raised to a seemingly smaller power.

Let us now use a heuristic inspired by Equation 21. Clearly, a good structure is the one where
mutual information between a variable and its parents is maximized. Given that the rest of the network
structure is fixed, we look particularly at the way the hidden layer is a parent to biological modalities.
Although we don’t know the distribution of these hidden labels, we can “induce” them to be more
mutually informative about their children by making them parents of mutually informative children.
We can therefore reduce the problem of structure learning here to that of finding subsets of biological
modalities, such that the variables in a set are highly mutually informative of one another, and then
assign every subset to the same parent hidden variable h.
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A straightforward way to do this is through hierarchical agglomerative clustering (HAC),
wherein N data points (here, the biological modalities) are hierarchically clustered from bottom up
such that at any level in the hierarchy, intra-cluster points are closer and inter-cluster points are farther.
Therefore, HAC requires as its input (a) a (symmetric) pairwise distance matrix D ∈ RN×N where Dij

is some distance metric between points i and j, and (b) a linkage criterion to decide the clusters as a
function of pairwise distances between cluster members. Because we want to subset modalities according
to mutual information, a good distance metric to use here is the variation of information given by

V I(X;Y ) =H(X,Y ) − I(X;Y )
=H(X ∣Y ) +H(Y ∣X)

(22)

where H(X,Y ) refers to joint entropy over X and Y while H(X ∣Y ),H(Y ∣X) are the corresponding
conditional entropies. Unlike mutual information, variation of information is a true metric in that it
follows the triangle inequality, amongst other key metric properties. For the linkage criterion, it is
sensible to use “mean” linkage clustering, the idea being that hidden modalities would separate the
cluster centers. Once the clustering is done, we can recover the clusters at any level of the hierarchy,
depending on the number of clusters that we want: 1 structure for every given number of hidden variables
κ, which gives us just ∣A∣ number of structures, exactly linear in the number of biological modalities and
a huge reduction from ∣A∣∣A∣ or ∣A∣∣κ̂∣. Deciding the number of clusters κ is a key parameter. As discussed
in Section 2.4, it must be much smaller than the number of biological modalities. Indeed, some biological
knowledge can be used to restrict the range of κ, which can then be fine-tuned by using the log-likelihood
score on training data. An engineering question which must be tested is whether structure learning should
be done for every species separately with just the training data Dt for our species of interest, or on the
entire crossmodal model using the aggregate dataset D.

3.3 Making Inferences

The key advantage of a probabilistic model of tolerance is the amount of flexibility it offers, in terms
of the possible queries which can be made to the model. Since a joint distribution P is learnt over the
entire feature space, one can ask any arbitrary queries about a subset of features, conditioned on any
subset of features. Although popular exact inference algorithms like the variable elimination algorithm,
message passing algorithm, and belief propagation algorithm exist, for very large networks such as ours
they are highly intractable. Therefore, we work with approximate particle-based sampling algorithms for
inference, in particular, Monte Carlo Markov Chain method of Metropolis Hastings, using a collapsed
particle setting for hybrid dynamic Bayesian networks (called Rao-Blackwellised Particle Filtering
for a Switching Kalman Filter)[16]. Due to the engaging complexity of these algorithms, the reader
is referred to Chapter 5 of [13] and Chapters 12, 14 and 15 of [2].

We now elucidate below some interesting queries which can be made to this model:

Predicting Tolerance This is the most important kind of prediction expected of the model to make.
Given the data D of a new subject (of any species k), classify it as tolerant or sensitive. The
probabilistic query which can be made here is P (λ∣D), where D may contain complete evidence of
every other variable of the model, or only partial evidence (wherein the query would marginalize
over the non-evidential variables). This allows us to provide as little, or as much, data available, say
using just the metabolomics data, or only transcriptomics data, or all the biological modalities. One
could enquire even without knowing the type and amount of pathogen that has infected the host,
and still come up with a reasonable estimate of tolerance. Additionally, querying without providing
the host species k in evidence would induce a marginalization over host species, permitting more
domain transfer. Moreover, since this is a temporal model, we can predict future states of the
host based on present state data (referred to as “particle tracking” in Kalman Filter literature),
permitting an “early prediction” of tolerance, aiding in early medical interventions. Furthermore,
one can always extend the model to differentiate not just tolerant states to those that are sensitive,
but also to those that are entirely resistant to infection.

Cross-Species Analyses Using data D for a different species k (such as a pig, frog or mouse), which
could include its state of tolerance, pathogen information, etc. we can make interesting queries on
our species of interest (say Homo sapiens). We can fill in for the biological modalities of humans,
ah, using MAP queries like âh = arg maxah P (ah∣Dk). These could help us simulate biological
conditions of and do in-silico experiments on a species of interest, by conducting biological in-vivo
experiments on another.
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Determining Key Biomolecules and Pathways Finding differentially expressed (DE) biological modal-
ities becomes a very straightforward task in this setting. For a modality of interest a, one can find
out differential expression by estimating the difference in the conditional distributions P (a∣λ = 0)
and P (a∣λ = 1) using Kullback-Liebler Divergence, which for discrete distributions P1 and P2 is
given by

DKL(P1∣∣P2) =∑
i

P1(i)log (
P1(i)
P2(i)

)

The higher is DKL, the more differentially expressed the modality is. Up or down regulation can be
figured by comparing means of P (a∣λ = 0) and P (a∣λ = 1). Usually, these DE modalities are used
as a proxy for “key biomolecules” which could be driving the tolerance response. However, a good
analysis would be to see their effect on tolerance itself, a more direct measure of keyness. That is,
defining importance of a modality in driving tolerance as DKL between P (λ∣ah = min(ah)) and
P (λ∣ah =max(ah)). Moreover, this effect on tolerance can be checked at the level of a module, by
querying for tolerance given a hidden node. Identified sets of key genes, proteins and metabolites
can then be mapped to important biochemical pathways.

Simulating Perturbation Studies The advantage of having a computer model which directly maps
to the underlying biology is that experiments can be “simulated” on the computer model itself. A
Bayesian Network model allows opportunities to do various mutation and perturbation studies, say
by removing certain edges of the network structure and seeing their impact on predicting tolerance.
This will direct more focused research in host-pathogen interactions at a faster pace, by exploiting
the rich ontology of this model to quickly pre-discover novel observations and mechanisms, worthy
of expensive and time-consuming confirmatory tests at the lab.

3.4 Challenges

The power of this model is contingent on a number of challenges which must be overcome to make
confident predictions. The nature of our problem is skewed from a conventional machine learning problem
setting, in that we have very high-dimensional data (say of dimension D), but we can expect small
training datasets of size N such that N ≪ D. Usually, an ML algorithm learns on a real-word training
dataset well, given that N is exponential in D, and hence N ≫ D. Therefore in our flip-case, the
curse of dimensionality might appear to be heavy, making these two key challenges to be addressed.
Fortunately, the premise of Bayesian Networks is that of a compact representation of the feature space
in terms of conditional independencies. Thus, the entire dataset can be used to independently inform us
about subsets of the feature space, each of whose dimensionality is much much smaller.

3.4.1 Dealing with High-dimensional Data through Random Projections

Another key idea for dealing with the curse of dimensionality is to preprocess our data through a step
of dimensionality reduction (DR). The problem of DR is essentially of finding a map from the original
high-D space X ∈ RD to a low-D space Y ∈ RL, where L ≪ D. Usually, the construction of this map
depends on not only the data, but also on the purpose for which we want to reduce the dimensions, thus
giving rise to various DR algorithms. Recall that we used one such algorithm called mDRUR in Section
3.2.2, but only temporarily, so as to impute missing values in the data. Nothing particularly stops us
from reducing the entire feature space of the model. One of the fastest and simplest DR algorithms
which can be used for that, is called Random Projections (RPs). An RP finds a map fRP ∶ X → Y which
preserves the pairwise distances between all points of the dataset. That is ∀x1, x2 ∈ RD,

∣∣x1 − x2∣∣ ≈ ∣∣fRP (X1) − fRP (X2)∣∣

Although various maps satisfy this property, a famous map is the Normal RP, wherein fRP (x) = Rx
where R ∈ RL×D such that Rij ∼ N (0,1/D). Interestingly, this map preserves the entire subspace, and
also maintains cluster separations, while making the lower dimensional Gaussians more spherical, thus
making it easier to model the distribution as a Conditional Linear Gaussian (or a mixture of multivariate
Gaussians)[11]. Which is why this is a suitable DR technique for our Bayesian model. We can apply
RP on the entire huge space of biological modalities for our training and testing datasets with the same
function fRP .

One problem which we immediately run into, however, is that of defining the underlying biological
network for this random projected feature space. Although we’ll have a much smaller and thus more
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tractable Bayesian Network to work with, its connectivities would be quite unclear. This issue can be
redressed by using structure learning, similar to that described in Section 2.4. However, another issue
which we face is that we lose a direct correspondence between the biological system and the computational
model, making it less interpretable. This is because we cannot project back to the original space X from
Y using RP. A workaround for this is to use a different DR method, which is so-to-speak “reversible”,
like Principle Component Analysis, or PCA. However, applying PCA will certainly not preserve cluster
separations, giving us a poor, albeit interpretable, model. In conclusion, we must empirically test out the
advantages of applying dimensionality reduction to the entire feature space, given the costs and benefits
of doing so, to the overall model quality and interpretability.

3.4.2 Dealing with Small Training Datasets by being a Bayesianist

As discussed in Section 3.2.1, the notion of conjugate priors gives us a nice interpretation of the Bayesian
approach to probabilistic modeling. That the probability distribution on our feature space X is a “prior
belief of our world” P (X ), which gets updated as we acquire more and more data samples D from the
world, (through multiplication with the likelihood of data given current belief: P (D∣X ),) to what is
called the posterior belief P (X ∣D). The process of acquiring data is merely an incremental step in our
belief of the world. Thus, in the limit of small training data, if one assumes some appropriate “pseudo
data points” to begin with, we can be more confident in our initial beliefs. This, in essence, is exactly
what maintaining a prior does.

For example, in a Bernoulli trial experiment of sequence of coin tosses, with probability of heads for

the coin being θ, the MLE comes out to be θ = ∣H ∣
∣H ∣+∣T ∣ , where ∣H ∣ is number of heads and ∣T ∣ is number

tails in the sequence. Having a Beta prior on it, that is assuming θ ∼ Beta(α,β), gives a MAP estimate

of θ = ∣H ∣+α
∣H ∣+∣T ∣+α+β . Intuitively, α works as a pseudo-count of number of heads and β as a pseudo-count of

number of tails. So if we have a prior belief for the coin to be fair, we can bias the value of θ to remain
close to 0.5 by selecting large equal values for α and β.

This strategy is often referred to as a Bayesianist approach to probability, contrary to a frequentist
approach. In the current model, we maintain a prior only on the host species variable. However, we could
add a prior on any other variable, which we strongly believe to center around some prior value. This
would relax a little pressure from the training data to inform our models. But defining and designing
priors for this problem, is going to be a scientific challenge in itself, which could require further tuning.
(A mild extension of help here is that of a hierarchical Bayes model, but it will still not circumvent this
massive challenge.) And if grossly wrong, priors could bias the entire model to fit to noise. Therefore, it
remains to be empirically tested if a Bayesianist approach will improve our model, or not.
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