
High-dimensional datasets have become increasingly common in
biology. While a litany of complex statistical and machine learning
techniques can be applied to tease out patterns from these data,
visualizing the data itself can offer key insights into the data
distribution. Methods such as t-SNE (t-Stochastic Neighbor
Embedding) provide a means to visualize high-dimensional data by
reducing the data to a low dimensional (two or three dimensions)
space. As biological datasets are associated with an underlying
graph structure, incorporating network knowledge can not only better
the visualization of these data, but also allow aberrations in the
different biological organization spaces to be seen as perturbations to
known biomolecular interactions. Additionally, graphs can encode any
arbitrary knowledge such as label assignments as clique graphs, or
time information as chain/tree graphs. For the visualization of such
graph-based datasets, we extended t-SNE to a more generalized X-t-
SNE (Exponential-family-t-Stochastic Neighbor Embedding). Our
methodology uses the same Student’s t-distribution in the low
dimensional space, but generalized exponential family distributions in
high dimensions. We principally and sequentially aggregate
distributions in the high dimensional space while learning a mapping
to the low dimensional space, which allows simultaneous visualization
of multiple high dimensional feature spaces and graph structures. We
apply our method to visualize abstract datasets such as the Lorenz
attractor, popular ML datasets like MNIST handwritten digits, as well
as biological datasets like human embryonic stem cell differentiation.
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The explosion of high-dimensional data in biology and life sciences
has warranted the need of good data visualization algorithms, which
can squish the “relevant” information onto just 2 or 3 dimensions.
While popular dimensionality techniques such as PCA (which embeds
data through a linear transformation while maximizing variance) and
Auto-encoders (which do the same but through a non-linear one) can
be used for this purpose, algorithms that preserve some notion of a
“local pairwise distances” like t-SNE (Maaten & Hinton, 2008) have
become state-of-the-art of visualization.
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Objective: 𝑃𝑃 ∆𝑥𝑥𝑖𝑖𝑖𝑖 ≈ 𝑃𝑃 ∆𝑦𝑦𝑖𝑖𝑖𝑖
By minimizing KL Divergence: 
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The idea being encoded is that we must
preserve a neighborhood, i.e., points
“probably” close in the high-D space must
remain “probably” close in the low-D
space. We define these distributions by:
o pji: For every point i in X, place an

isotropic Gaussian around it from which
every other point j is generated. 𝜎𝜎𝑖𝑖 of
kernel is found such that perplexity of
conditional distribution is as per the
user’s requirement.

o qji: For every point i in Y, place a heavy-
tailed distribution, such as the Student-t,
from which every other point j is
generated.

The mapping is “learnt” by enforcing that
these two sets of distributions remain as
identical as possible, by minimizing the
distance (KL-divergence) between them.

Gaussian (blue) 
kernel in X, 
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We extend t-SNE into a generalized exponential-family-t-SNE or “X-t-
SNE”, wherein we impose one of the following exponential family
conditional distributions in the feature space x~exp(−𝜂𝜂𝜂𝜂) (𝜂𝜂 decides
the perplexity). But more often than not, a dataset would have a graph
structure G alongside a continuous feature space X. To combine
multiple output spaces, we define an intermediate latent space Z.
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X: N x P
feature space G: Graph of N nodes

with E edges

Z: N x ? 
latent space

Y: N x 2 
output space

Define 𝑃𝑃 𝑍𝑍|𝑋𝑋,𝐺𝐺 and objective as 𝑃𝑃 ∆𝑧𝑧𝑖𝑖𝑖𝑖 ≈ 𝑃𝑃(∆𝑦𝑦𝑖𝑖𝑖𝑖)
We use an “OR” formulation of Z so that intuitively
we extract “union” of information in the two spaces:
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Additionally, we can extend this to S number of
feature + graph spaces:
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Graph structures can encode arbitrary relationships between data!
Dataset # points Feature Space X Graph Space G Labels

MNIST handwritten
digits

10000 Black and white pixel 
values

A clique graph connecting 
points with same label

Digits 0-9

Cora paper citations 2708 Bag-of-words Actual citation network Paper topic type
Human embryonic 
stem cell differentiation

18 Transcriptomics A claw graph of cell 
lineage in time

Cell type

3D Lorenz attractor 10000 Variable space of 
chaotic Lorenz system

A chain graph of changing 
variable space in time

Time point

PCA

t-SNE X-t-SNE

Autoencoder t-SNE X-t-SNE

node2vec Variational Graph 
Autoencoder

t-SNE
X-t-SNE

t-SNE

X-t-SNE
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Some interesting observations to note:
MNIST: X-t-SNE gives more clear clustering (semi-supervised)
Cora: X-t-SNE gives best visual clustering, better than state-of-
the-art graph embedding algorithms like node2vec and VGAE
Lorenz: X-t-SNE is better able to maintain the butterfly
manifold because the chain graph “smooths” the space out
hESC: While t-SNE only captures clusters of same cell type, X-
t-SNE is also able to encode the notion of cell differentiation
trajectories

Conclusions
We extended t-SNE into a generalized multi-output space method of visualizing data called X-t-SNE, that incorporates graphs to encode any
complex relationship between the data being visualized. This has multiple applications in studying biological systems: (1) embedding expression
profiles in tissue/tumor/species specific regulatory network contexts, (2) performing multiomics with multigraph structures (using layered X-t-
SNEs), (3) tracking cell state evolution in an X-t-SNE landscape, etc. Grant acknowledgements: This work is supported by DARPA THoR 15-21.
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