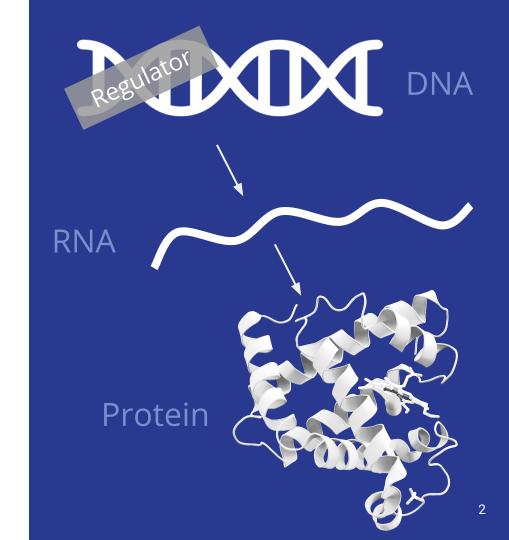
Causal Computational Models for Gene Regulatory Networks

Parul Jain Sahil Loomba

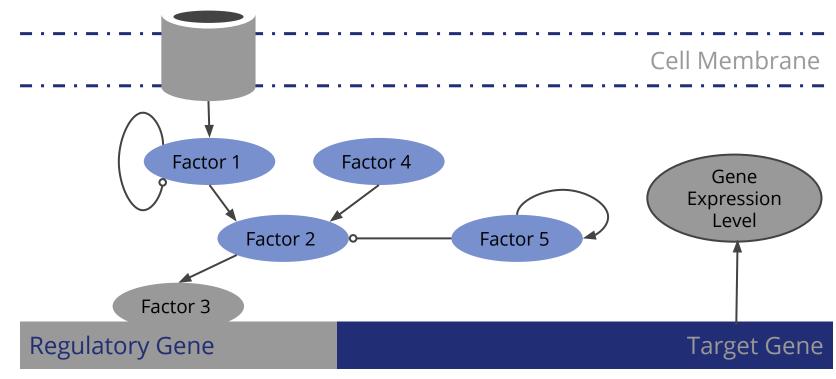
Advisors Dr. Sumeet Agarwal Dr. Parag Singla

1

The Central Dogma of Biology

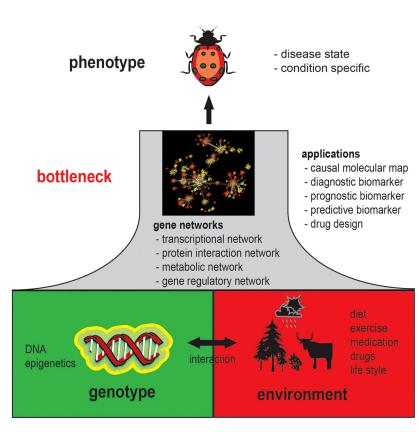


Gene Regulatory Networks - An Overview



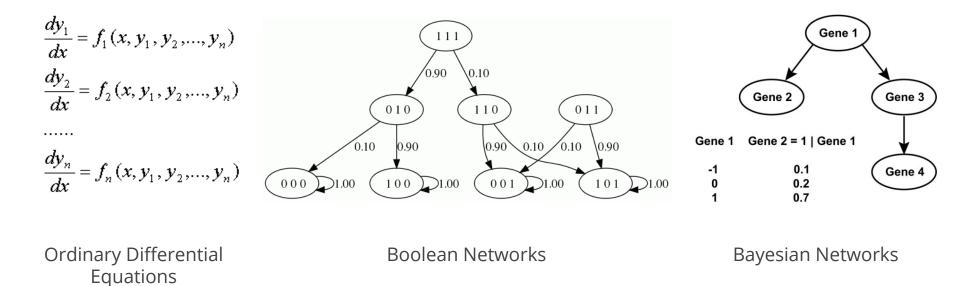
Importance of GRNs

- Model causal interactions
- Large dimensionality, lower it
 - ~20,000 genes in Humans
- Network Medicine
 - Drug design



Source: Emmert-Streib et al. *Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks*, Frontiers in Cell and Developmental Biology, Molecular Medicine, August 2014, Volume 2, Article 38, doi: 10.3389/fcell.2014.00038 **4**

Modelling GRNs



Discovering GRNs

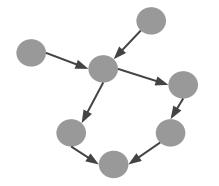
In Vitro

- Gene Silencing
- mRNA expression levels

In Silico

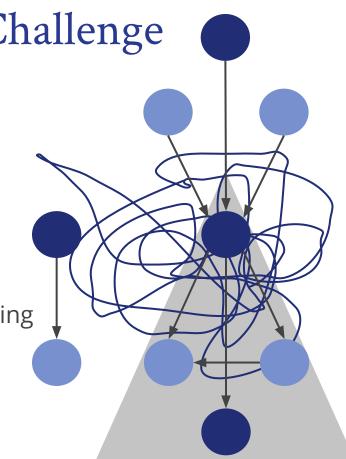
Input: Gene Expression Levels \rightarrow Time series signal

Output: GRN \rightarrow Causal interaction between nodes



Understanding The GRN Challenge

- Non-linearity of Biological Systems
- Causation versus Correlation
- Structure: Ambiguity and Specificity
- Whole is more than the Sum: Signal Masking
- Under constrained modelling

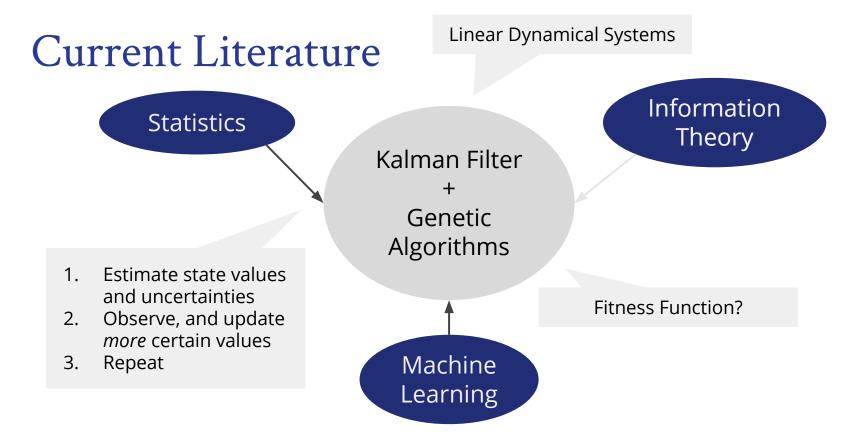


The Problem Statement

To create computational models of GRNs, which capture causal interactions between the genes involved,

while placing special emphasis on reducing dimensionality of the problem,

to allow wet lab work for in/validation for pressing disease networks



Source: Kasabov et al. Gene Regulatory Network Discovery from Time-Series Gene Expression Data – A Computational Intelligence Approach

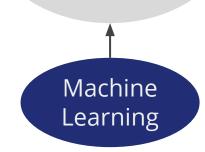
Current Literature

Without Hidden Layer [1]

 \rightarrow Biologically interpretable weights

- \rightarrow Generative model
- \rightarrow Non-linear!
- \rightarrow Curse of dimensionality?

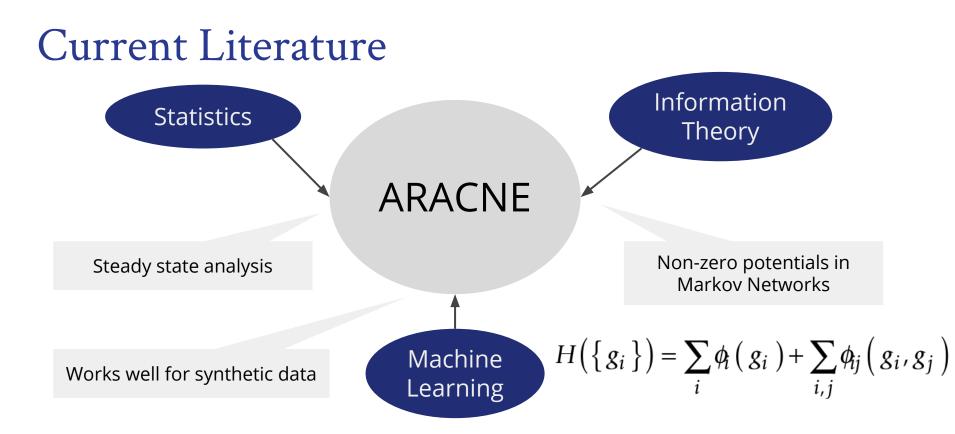
Neural Networks (without, with hidden layer)



Information Theory

With Hidden Layer [2] → Biologically uninterpretable weights → Better model fitting → Results similar to Recurrent NNs

Source [1]: Patrik D'haeseleer, Xiaobin Wen, *Linear modeling of mRNA expression levels during CNS development and injury*, Pacific Symposium on Biocomputing 4:41-52 (1999) Source [2]: Smith et al. *Time Series Gene Expression Prediction using Neural Networks with Hidden Layers*



Source: Margolin et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context, BMC Bioinformatics 2006, 7 (Suppl 1):S7 doi:10.1186/1471-2105-7-S1-S7

Datasets

- SysGenSIM: a simulation for gene expression levels, under given network constraints
 - For small number of nodes (10-50)
- DREAM Challenges pose fundamental questions about systems biology and translational medicine
 - DREAM-5 data; Variable time series length
- Real-life data for diseases such as cancer, neurodegenerative disorders

powered by Sage Bionetworks

Source: Pinna et al. *Simulating systems genetics data with SysGenSIM*, Bioinformatics Application Note, Vol. 27 no. 17 2011, pages 2459–2462, doi:10.1093/bioinformatics/btr40

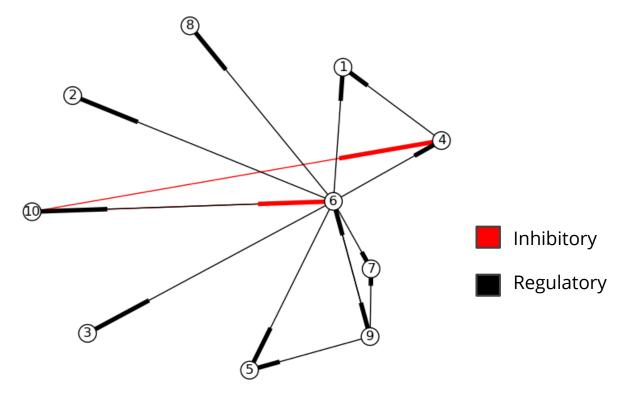
Granger Causality

If a signal X_1 "Granger-causes" (or "G-causes") a signal X_2 , then past values of X_1 should contain information that helps predict X_2 above and beyond the information contained in past values of X_2 alone.

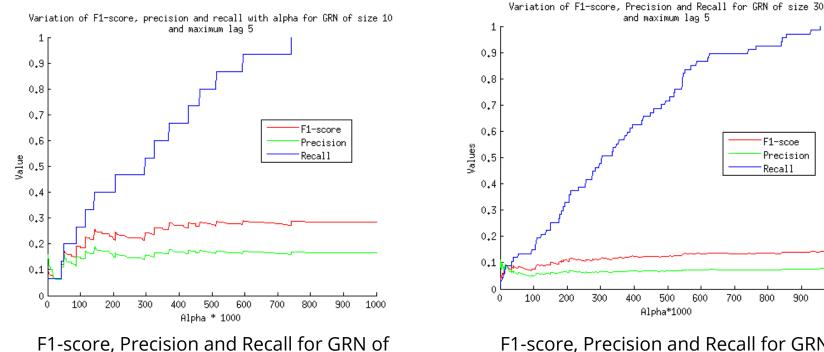
Parameters:

- Alpha (Bonferroni Factor)
- Maximum lag

Network: Ground Truth



Variation in Alpha (Bonferroni Correction)



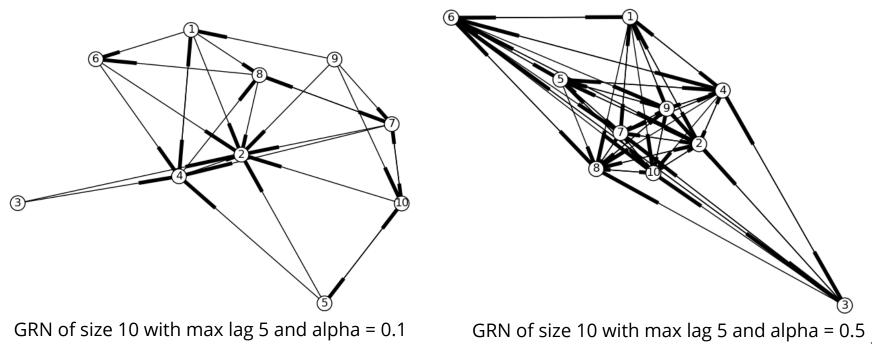
size 10 with max lag 5

F1-score, Precision and Recall for GRN of size 30 with max lag 5

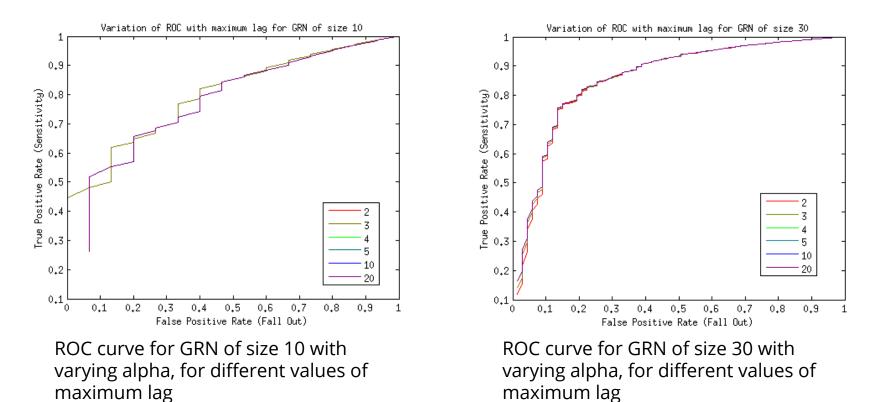
900

1000

Variation in Alpha (Bonferroni Correction)



Variation in Maximum Lag

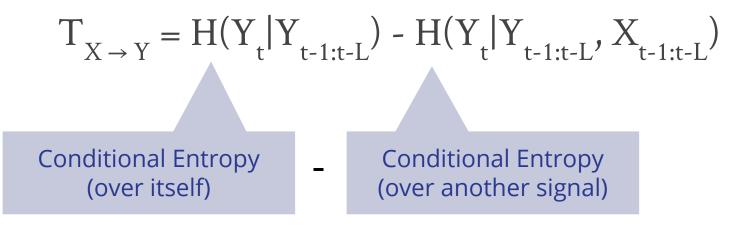


Key Findings - Pairwise GC Analysis

• Pros

- Simple approach
- Validation can improve precision
- Cons
 - High time complexity
 - Assumes linearity
 - False positives
 - Fails to provide a holistic view

The Way Ahead - Transfer Entropy

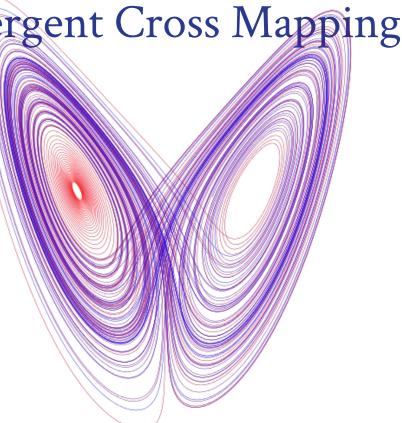


= Conditional Mutual Information

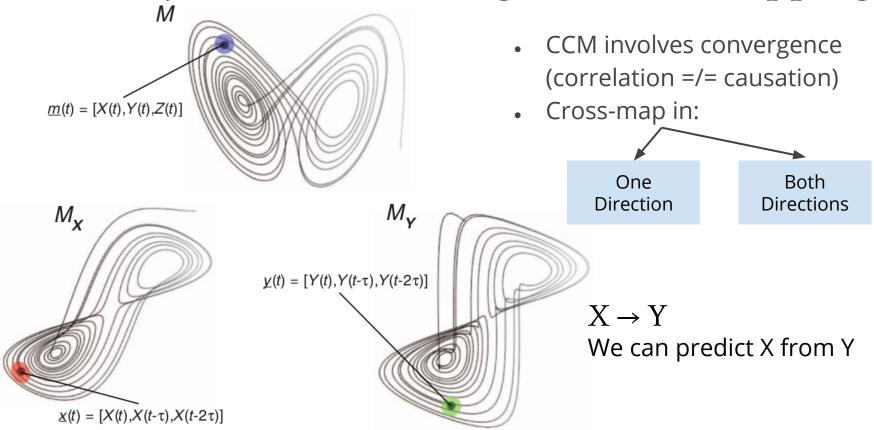
Source: Razak, and Jensen, *Quantifying 'Causality' in Complex Systems: Understanding Transfer Entropy*, PLoS ONE 9(6): e99462. doi:10.1371 /journal.pone.0099462

The Way Ahead - Convergent Cross Mapping

- Granger Causality doesn't work in
 - deterministic dynamic systems,
 - with weak to moderate coupling,
 - amongst inseparable factors.
- Not competing with GC
- New notion of causality →
 Belong to same dynamical system



The Way Ahead - Convergent Cross Mapping



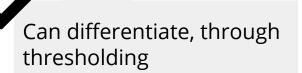
21

The Hybrid Approach

Information Theory

Theory of Manifolds

For stochastic, non-linear systems

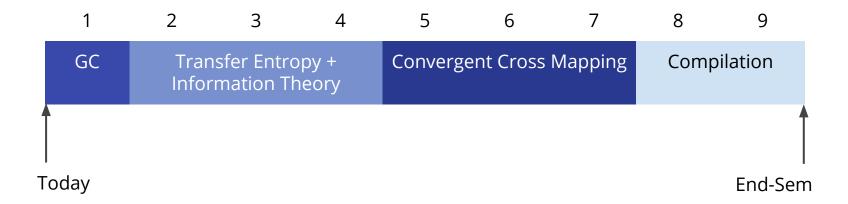


For possibly synergistic, deterministic systems

No difference between first order and transitive causality

Source: Schindler et al. *Causality detection based on information-theoretic approaches in time series analysis,* Bioinformatics Application Note, Vol. 27 no. 17 2011, Physics Reports 441 (2007) 1 – 46

Project Timeline



Thank You

Questions?

