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About the Challenge

• Plankton are critically important to our ecosystem.

• Traditional methods for measuring and monitoring plankton 
populations are time consuming. Improved approaches are needed. 
• One such approach is through the use of an underwater imagery sensor. 

• Need for automated algorithms to classify captured images.

Data Source: National Data Science Bowl
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Getting acquainted with the Data

• Data is in the form of low-resolution grayscale images.

• Training data: 30,366 images
• 121 classes: planktons(116) + unknown(3) + artifacts/junk(2).

• Test data: 1,30,400 unlabelled images.

• Training data is skewed: disproportionate number of images across classes
• from as low as 9 to as high as 1979.
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Skewed Data Distribution across classes
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Hierarchy of Classes
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Data Features
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ML Techniques

• Classical Techniques:
• Logistic Regression

• Multiclass SVM with Gaussian Kernel
• Holds well for Orientation and Feature Descriptors

• Random Forests

• Deep Learning: 
• Artificial Neural Networks

• Convolutional Neural Networks
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Shape Descriptors Analysis – 1
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Circularity Constant for acantharia protist images 
and chaetognath non sagitta images

Acantharia protist

Chaetognath non sagitta



Shape Descriptors Analysis – 2
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Hu Moment-1 for chaetognath sagitta images and 
chaetognath non sagitta images

Chaetognath non sagitta

Chaetognath sagitta



Orientation Descriptors Analysis - 1

• HoG (Histogram of Oriented 
Gradients) data.

• Vector (size 64) fed to a 
multiclass SVM with a Gaussian 
Kernel. (60% Training + 40% 
Validation.) 

• Best parameters led to a 
maximum mean accuracy of 
25.90%.
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Orientation Descriptors Analysis - 2

• Gabor Filter data. 
• Using Gabor Bank.

• Vector (size 70) fed to a 
multiclass SVM with a Gaussian 
Kernel. (60% Training + 40% 
Validation.) 

• Best parameters led to a 
maximum mean accuracy of 
49.88%.
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Feature Descriptors Analysis - SIFT

Raw Images

SIFT

Bag of Key Point 
Vectors

K-means

Vector of size 16 
for each image

Training

• SVM: 39.92%

• ANN: 19.23%
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Training on Raw Pixel Data
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• Training Dataset 60% + Validation Dataset 40%

Model Validation Log Loss Validation Accuracy (Top-1)

Crude ANN 20.38 32%

Crude CNN 4.18 56%

ANN SVM 2.38 58%



Future Work – 1

• Revision Theory
• Reiterate over data with larger deviation from the true value.

• Augmenting Multiple Feature Vectors
• For example: Matrix Product of Gabor and SIFT vectors.

• Random Forest for Image Classification

• Large-Scale Object Classification using Label Relation Graphs 
http://web.eecs.umich.edu/~jiadeng/paper/deng2014large.pdf

• Hierarchy and Exclusion (HEX) graphs, a new formalism that captures 
semantic relations between any two labels applied to the same object.
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http://www.google.com/url?q=http://web.eecs.umich.edu/~jiadeng/paper/deng2014large.pdf&sa=D&sntz=1&usg=AFQjCNG5f5l4ZOOf6g7Rwu_3mqnHLKsiQw


Future Work – 2: Hierarchical Paradigm
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Thank You. Questions?
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