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Problem Statement

To create computational models of GRNs,

which capture causal interactions between the genes ,

with emphasis on reducing dimensionality of the problem,

to allow wet lab work for in/validation for disease networks.
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Data

➢ SysGenSIM software for synthetic data
➢ Scale free networks of some average node degree
➢ Networks of size 10, 20, 50 and 100
➢ Both 500 and 1000 timesteps for ever network size
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Networks

Network Size 10 Network Size 20
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Networks

Network Size 50 Network Size 100
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Data Quantisation
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Data Quantisation
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Techniques

➢ Correlation - lagged correlation coefficient for time series data, along with lag 
value to infer directionality

➢ Granger Causality - X causes Y iff prediction of Y is significantly better, given 
past X and Y, as compared to with Y alone
○ Regression residue analysis
○ F-statistic

➢ Mutual Information - measure of mutual dependence between X and Y
➢ Transfer Entropy - X causes Y iff prediction of Y is significantly better, given 

past X and Y, as compared to with Y alone
○ Probabilistic prediction analysis
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Techniques In a Nutshell

Correlation Mutual Information

Granger Causality Transfer Entropy

Linear Non Linear

Non Predictive

Predictive
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Parameters

➢ Size

➢ Quantisation Levels

➢ Time Series Length
○ Time Lag

➢ Techniques
○ Smoothing
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Parameters

➢ Size [10, 20, 50, 100]

➢ Quantisation Levels [2, 5, 10, 20]

➢ Time Series Length [500, 1000]

○ Time Lag

➢ Techniques [ra, co, gc, mi, te]

○ Smoothing

➢ > 150 experiment runs
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Parameters - Time Lag

➢ Model Selection using Bayesian Information Criterion, for 

Granger Causality

➢ Maximum possible information transfer, for others 

(max_lag = 5)

BIC = -2 log(L) + k log(n)
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Results - Correlation
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 2
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Results - Correlation
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 5

15



Results - Correlation
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 2
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Results - Correlation
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 5
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Explanation - Correlation

Correlation  --/--> Causality
➢ Strong correlation between independent genes with common ancestors, 

especially if they are siblings

➢ Scaling of correlation to [0, 1] as correlation coefficient reduces difference
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Results - Pairwise
Granger Causality
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 2
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Results - Pairwise
Granger Causality
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 5
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Results - Pairwise
Granger Causality
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 2
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Results - Pairwise
Granger Causality
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 5
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Explanation - Granger Causality (Pairwise)

➢ PGC cannot differentiate between direct and indirect causalities and thus, 
though recall is high, precision is low

➢ Non linear data

1

2 3

1

2 3
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Results -
Mutual Information
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 2
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Results -
Mutual Information
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 5
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Results -
Mutual Information
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 2
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Results -
Mutual Information
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 5
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Explanation - Mutual Information

I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

➢ MI is not effective at predicting future events from current data. It is 
symmetric.

➢ It does not indicate the direction of the flow of information (unless we use the 
lag direction).
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Results -
Transfer Entropy
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 2
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Results -
Transfer Entropy
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Bins : 5
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Results -
Transfer Entropy
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 2
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Results -
Transfer Entropy
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Bins : 5
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Parameters - Additive Smoothing

➢ Problem: signal is too short!

P(X=x) = (1+favourable(x))/(size(X)+total)
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Results -
Mutual Information
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Smoothing : Additive
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Results -
Mutual Information
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Smoothing : Additive
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Results -
Transfer Entropy
Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Smoothing : Additive
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Results -
Transfer Entropy
Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Smoothing : Additive
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Explanations and Questions - Transfer Entropy

TX → Y = H(Yt|Yt-1:t-L) - H(Yt|Yt-1:t-L, Xt-1:t-L)

➢ TE is the more generalised case for Granger Causality
➢ Does not assume linearity of the system being studied
➢ Additive Smoothing is a must, because of the large domain of the probability 

distributions involved
➢ Model Order can be increased?
➢ Optimal level of quantisation?

Y

X
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Summary of our Experience

➢ Poverty of data → Smoothing
➢ Abundance of parameters → Grid Search
➢ No strict trends in any direction, but largely:

TE ~ MI > GC > Correlation

➢ These methods, standalone, are not a good measure for the discovery of 
GRNs with high confidence

➢ Combination of multiple methods (akin to FP Correction, Structure Learning) 
can enhance the performance
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Future Work

➢ Correction for False Positives: interplay of GC, MI, TE
○ Feature Weighting

➢ Treat signals being causally related if they belong to same dynamical system

➢ Incorporate Network Substructures
➢ Use real Biological Datasets to validate so-formed technique

Correlation Mutual 
Information

Granger 
Causality

Transfer 
Entropy

Convergent 
Cross Map

As Random Variable
As Dynamical System
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Thank You
Questions?
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The Way Ahead - Convergent Cross Mapping

● CCM involves convergence 
(correlation =/= causation)

● Cross-map in:
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Both 
Directions

One 
Direction

X → Y
We can predict X from Y



The Hybrid Approach
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Information 
Theory

Theory of 
Manifolds

For stochastic, non-linear 
systems

For possibly synergistic, 
deterministic systems

Can differentiate, through 
thresholding

No difference between 
first order and transitive 
causality



Scatter

Size : 20

Data Points : 500

Bins : 2

Method : Correlation
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Scatter

Size : 20

Data Points : 500

Bins : 2

Method :

Granger Causality
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Scatter

Size : 20

Data Points : 500

Bins : 2

Method :

Mutual Information
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Scatter

Size : 20

Data Points : 500

Bins : 2

Method :

Transfer Entropy

47


