Causal Computational Models for Gene Regulatory Networks

Parul Jain Sahil Loomba

Advisors Dr. Sumeet Agarwal Dr. Parag Singla

Gene Regulatory Networks

Problem Statement

To create computational models of GRNs, which capture causal interactions between the genes, with emphasis on reducing dimensionality of the problem, to allow wet lab work for in/validation for disease networks.

Data

- SysGenSIM software for synthetic data
- Scale free networks of some average node degree
- Networks of size 10, 20, 50 and 100
- > Both 500 and 1000 timesteps for ever network size

$$\frac{\mathrm{d}\,G_g}{\mathrm{d}\,t} = Z_g^c \cdot V_g \cdot \theta_g^{syn} \cdot \prod_k \left(1 + A_{k,g} \frac{G_k^{h_{k,g}}}{G_k^{h_{k,g}} + (K_{k,g}/Z_k^t)^{h_{k,g}}} \right) - \lambda_g \cdot \theta_g^{deg} \cdot G_g$$

Networks

Network Size 10

Networks

Network Size 50

Network Size 100

Data Quantisation

Data Quantisation

Techniques

- Correlation lagged correlation coefficient for time series data, along with lag value to infer directionality
- Granger Causality X causes Y iff prediction of Y is significantly better, given past X and Y, as compared to with Y alone
 - Regression residue analysis
 - F-statistic
- Mutual Information measure of mutual dependence between X and Y
- Transfer Entropy X causes Y iff prediction of Y is significantly better, given past X and Y, as compared to with Y alone
 - Probabilistic prediction analysis

Techniques In a Nutshell

	Linear	Non Linear	
Non Predictive	Correlation	Mutual Information	
Predictive	Granger Causality	Transfer Entropy	

Parameters

- ≻ Size
- > Quantisation Levels
- > Time Series Length
 - \circ Time Lag
- > Techniques
 - Smoothing

Parameters

- > Size [10, 20, 50, 100]
- Quantisation Levels [2, 5, 10, 20]
- Time Series Length [500, 1000]
 - Time Lag
- Techniques [ra, co, gc, mi, te]
 - Smoothing
- > > 150 experiment runs

Parameters - Time Lag

Model Selection using Bayesian Information Criterion, for Granger Causality

 $BIC = -2 \log(L) + k \log(n)$

 Maximum possible information transfer, for others (max_lag = 5)

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Size:10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Explanation - Correlation

Correlation --/--> Causality

- Strong correlation between independent genes with common ancestors, \succ especially if they are siblings
- Scaling of correlation to [0, 1] as correlation coefficient reduces difference \succ

Results - Pairwise Granger Causality

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Average Degree : 3

Linearity : Non linear

Data points : 500

Results - Pairwise Granger Causality

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Results - Pairwise Granger Causality

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Explanation - Granger Causality (Pairwise)

- PGC cannot differentiate between direct and indirect causalities and thus, though recall is high, precision is low
- > Non linear data

 $\begin{array}{c} 1 \\ 2 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 3$

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Explanation - Mutual Information

I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

- MI is not effective at predicting future events from current data. It is symmetric.
- ➤ It does not indicate the direction of the flow of information (unless we use the lag direction).

False Positive Rate

Parameters - Additive Smoothing

$$T_{J \to I} = \sum_{x_{n+1}, x_n, y_n} p(x_{n+1}, x_n, y_n) \log \left(\frac{p(x_{n+1}, x_n, y_n) \cdot p(x_n)}{p(x_n, y_n) \cdot p(x_{n+1}, x_n)} \right)$$

Problem: signal is too short!

P(X=x) = (1+favourable(x))/(size(X)+total)

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Smoothing : Additive

Size : 20

Type : Scale free

Average Degree : 4

Linearity : Non linear

Data points : 500

Smoothing : Additive

Results -Transfer Entropy

Size : 10

Type : Scale free

Average Degree : 3

Linearity : Non linear

Data points : 500

Smoothing : Additive

Explanations and Questions - Transfer Entropy

$$T_{X \to Y} = H(Y_t | Y_{t-1:t-L}) - H(Y_t | Y_{t-1:t-L}, X_{t-1:t-L})$$

- > TE is the more generalised case for Granger Causality
- > Does not assume linearity of the system being studied
- Additive Smoothing is a must, because of the large domain of the probability distributions involved
- Model Order can be increased?
- > Optimal level of quantisation?

Summary of our Experience

- > Poverty of data \rightarrow Smoothing
- > Abundance of parameters \rightarrow Grid Search
- > No strict trends in any direction, but largely:

TE ~ MI > GC > Correlation

- These methods, standalone, are not a good measure for the discovery of GRNs with high confidence
- Combination of multiple methods (akin to FP Correction, Structure Learning) can enhance the performance

Future Work

- Correction for False Positives: interplay of GC, MI, TE
 - Feature Weighting
- > Treat signals being causally related if they belong to same dynamical system

As Random Variable

As Dynamical System

Convergent Cross Map

- Incorporate Network Substructures
- Use real Biological Datasets to validate so-formed technique

Thank You

Questions?

The Way Ahead - Convergent Cross Mapping

The Hybrid Approach

Information Theory

Theory of Manifolds

For stochastic, non-linear systems

Can differentiate, through thresholding

For possibly synergistic, deterministic systems

No difference between first order and transitive causality

