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Reintroducing the GRN Problem
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● Correlation

● Granger Causality

● Mutual Information

● Transfer Entropy

Parameters: Size, quantisation, time, lag

Asides: Grid Search, Laplace Smoothing  

Where BTP1 finished… 

TE ~ MI > GC > CO 3



… is where BTP2 picks up
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Convergent Cross Mapping [Sugihara et al. 2012]
Diffeomorphism across Shadow Manifolds

● For weakly coupled dynamical 
systems

● New notion of causality: belonging 
to same dynamical system

● Library size ∝ Time series length
● Parameters:

○ Dimensions: M, E where E ≥ M
○ Lag: ᶦ
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Convergent Cross Mapping
Some Results

Network Size 50, Time Series Length = 500 Network Size 100, Time Series Length = 500 6



Normalisation should be the norm!

Network Size 50, Time Series Length = 1000 Normalised Time Series data 7



High degrees are degrading!

Network Size 50, Average Degree = 7 8



High degrees are degrading!

Network Size 50, Average Degree = 2 9



Convergent Cross Mapping
Some Results

Network Size 50, Time Series Length = 1000 Network Size 100, Time Series Length = 1000 10



Transfer Entropy
Some Results

Network Size 100, Time Series Length = 1000
Quantization Level = 10

Network Size 50, Time Series Length = 1000 
Quantization Level = 10 11



Mutual Information
Some Results

Network Size 100, Time Series Length = 1000
Quantization Level = 10

Network Size 50, Time Series Length = 1000 
Quantization Level = 10
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Granger Causality
Some Results

Network Size 100, Time Series Length = 1000Network Size 50, Time Series Length = 1000 13



Network Size 100, Time Series Length = 1000Network Size 50, Time Series Length = 1000

Correlation
Some Results
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ARACNE [Margilin et al. 2006]
Graph Structure Estimation

Network Size 100, Time Series Length = 1000Network Size 50, Time Series Length = 1000 15



Pairwise Metrics of Causality
A Summary

CCM and Correlation *seem* to work the best at a pairwise level
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Naive Edge Selection

1. (Since all pairwise metrics are directly proportional to the strength of 

causality,) sort nC2 edges by metric value in decreasing order.

2. Choose top-k edges and output as graph G.

Smart Edge Selection
Future Work
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Use a “sophisticated” algorithm which selects top-k edges, by making use of graph 

connectivity and other constraints information.



Intrinsic Graph Structure Estimation [Hino et al. 2015]
Adjacency Matrix to Observation Matrix

f

(Pairwise Metrics used here)

Θ

Ξ
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Intrinsic Graph Structure Estimation [Hino et al. 2015]
The Random Walk Model

Digraph
Laplacian

β/τ β/τ
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Intrinsic Graph Structure Estimation [Hino et al. 2015]
Parameter Estimation Algorithm

In an EM style algorithm, iterating over k (number of edges in graph):
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Intrinsic Graph Structure Estimation
Moving towards Multi-attribute Data

g

(Multiple Pairwise Metrics used here)

Θ
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Intrinsic Graph Structure Estimation
Moving towards Multi-attribute Data

Ideally, Θ should be exactly mapped by every qf  -1(Ξ)
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Intrinsic Graph Structure Estimation
More Considerations & Postprocessing

● Imposing extra constraints on Θ

● Explore different ways to map g to Θ (hard versus soft constraints)

● For reduced computational complexity, use a small window of k
● Further postprocessing: Data Processing Inequality
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Thank You
Questions and Feedback
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