
Causal Computational Models for

Gene Regulatory Networks

Sahil Loomba
Parul Jain

Advisors
Dr. Sumeet Agarwal

Dr. Parag Singla



Reintroducing the GRN Problem
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● Correlation

● Granger Causality

● Mutual Information

● Transfer Entropy

Parameters: Size, quantisation, time, lag

Asides: Grid Search, Laplace Smoothing  

Where BTP1 finished… 

TE ~ MI > GC > CO 3



… is where BTP2 picks up
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Convergent Cross Mapping [Sugihara et al. 2012]
Diffeomorphism across Shadow Manifolds

● For weakly coupled dynamical 
systems

● New notion of causality: belonging 
to same dynamical system

● Library size ∝ Time series length
● Parameters:

○ Dimensions: M, E where E ≥ M
○ Lag: ᶦ
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Simulated Data

● SysGenSIM

○ Steady state data

○ Gene expression of different individuals

○ Size - 50, 100 Series - 500, 1000

● DREAM4 dataset [Young et al. 2014]

○ GeneNetWeaver software

○ Time series data

○ Size - 10, 100 Series - 21
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Normalisation should be the norm!

Network Size 50, Time Series Length = 1000 Normalised Time Series data 7



Results for SysGenSIM
(size 50, 1000 points)
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Results for SysGenSIM
(size 100, 500 points)
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Results for DREAM4
(size 10)
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Results for DREAM4 (size 10)
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CCM Correlation GC MI TE

1 0.55644 0.70667 0.55467 0.43733 0.69511

2 0.75676 0.60135 0.60557 0.52449 0.61149

3 0.55467 0.74756 0.4 0.49333 0.65067

4 0.67333 0.74625 0.46853 0.57742 0.43057

5 0.69231 0.79915 0.47436 0.55342 0.65491

Average 0.646702 0.720196 0.500626 0.517198 0.60855

ARACNE : AUROC = 0.668 (Young et al. 2014)



Results for DREAM4
(size 100)
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Results for DREAM4 (size 100)

13

CCM Correlation GC MI TE

1 0.7279 0.75607 0.45483 0.5949 0.47637

2 0.64951 0.64629 0.52156 0.56015 0.53877

3 0.69577 0.71094 0.50553 0.54045 0.53193

4 0.61088 0.68933 0.53896 0.54633 0.52694

5 0.64136 0.71993 0.51951 0.57414 0.52895

Average 0.665084 0.704512 0.508078 0.563194 0.520592

ARACNE : AUROC = 0.589 (Young et al, 2014)



Pairwise Metrics of Causality
A Summary

CCM and Correlation *seem* to work the best at a pairwise level
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Naive Edge Selection

1. (Since all pairwise metrics are directly proportional to the strength of 

causality,) sort nC2 edges by metric value in decreasing order.

2. Choose top-k edges and output as graph G.

Smart Edge Selection
Future Work
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Use a “sophisticated” algorithm which selects top-k edges, by making use of graph 

connectivity and other constraints information.



Intrinsic Graph Structure Estimation [Hino et al. 2015]
Adjacency Matrix to Observation Matrix

f

(Pairwise Metrics used here)

Θ

Ξ
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Intrinsic Graph Structure Estimation [Hino et al. 2015]
The Random Walk Model

Digraph
Laplacian

β/τ β/τ
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Intrinsic Graph Structure Estimation [Hino et al. 2015]
Parameter Estimation Algorithm

In an EM style algorithm, iterating over k (number of edges in graph):
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Intrinsic Graph Structure Estimation
Moving towards Multi-attribute Data

g

(Multiple Pairwise Metrics used here)

Θ
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Intrinsic Graph Structure Estimation
Moving towards Multi-attribute Data

Ideally, Θ should be exactly mapped by every qf  -1(Ξ)
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Intrinsic Graph Structure Estimation
Problems!
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ᵆ         ᵌ

Exponential Map

Logarithmic Map

Many-to-one mapping

Q. Does logarithm exist?
Q. If yes, is it principal log?



Intrinsic Graph Structure Estimation
Intervention 1
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ᵆ         ᵌ

Polynomial Map

Inverse Polynomial Map

Q. How to find the (unique) inverse 
of a polynomial of matrices?



Intrinsic Graph Structure Estimation
Intervention 2
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ᵆ         ᵌ

Solving EM in Primal Space



Intrinsic Graph Structure Estimation
Intervention 2
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ᵆ                    ᵌ

ᵆ’

 

ᵌ’

Weighted Directed Fully-
Connected Graph

Dual of ᵌ

Top-k Adjacency 
Matrix

Dual of ᵆ

By construction.
Weights?

Random walk model
+

(Soft) k-thresholding

By construction.
Weights?

Random walk model



Pagerank on Dual for Graph Estimation
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Solving EM in 
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Random Walk on Dual for Graph Estimation
Dual Graph Construction
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Random Walk on Dual for Graph Estimation
Dual Graph Construction
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Random Walk on Dual for Graph Estimation
Use the Pagerank Random Walk Model
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Pagerank on Dual for Graph Estimation
Empirical Validation on DREAM4
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CCM Correlation GC MI TE

Pairwise 0.55644 0.63378 0.72711 0.54489 0.38844

IGE 0.47289 0.58756 0.60044 0.35022 0.45244

Pagerank 
Dual

0.64089 0.63733 0.728 0.51111 0.48533



(There’s still some) Future Work
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● Some mysteries for Pairwise Metrics

● Mathematical validation of graph estimation
○ Why are the “important” links the “actual” links of causality?

● Essentially we’re doing a clustering of edges
○ Can we fit this in a regular clustering paradigm?

● Biological information still hasn’t been used!



Thank You
Questions and Feedback
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