Causal Computational Models for Gene Regulatory Networks

Sahil Loomba Parul Jain

Advisors Dr. Sumeet Agarwal Dr. Parag Singla

Reintroducing the GRN Problem

Where BTP1 finished...

- Correlation
- Granger Causality

$$\rho(X,Y) = \frac{\cos(X,Y)}{\sigma_X \sigma_Y}$$
$$x_t = a_0 + \sum_{i=1}^m a_i x_{t-i} + \sum_{i=1}^q b_i y_{t-i} + \epsilon_t$$

Mutual Information

I(X,Y) = H(X) - H(X|Y)

con(X V)

• Transfer Entropy $T(X,Y) = T_{Y \to X} = H(X_t | X_{t-1:t-d}) - H(X_t | X_{t-1:t-d}, Y_{t-1:t-d})$

Parameters: Size, quantisation, time, lag

Asides: Grid Search, Laplace Smoothing

 $TE \sim MI > GC > CO$

... is where BTP2 picks up

Convergent Cross Mapping

As Dynamical System

Convergent Cross Mapping [Sugihara et al. 2012] Diffeomorphism across Shadow Manifolds

- For weakly coupled dynamical systems
- New notion of causality: belonging to same dynamical system
- Library size ∝ Time series length
- Parameters:
 - Dimensions: M, E where $E \ge M$
 - \circ Lag: τ

$$C(X,Y) = \rho(X,\hat{X}_Y)$$

Simulated Data

- SysGenSIM
 - Steady state data
 - Gene expression of different individuals
 - Size 50, 100 Series 500, 1000
- DREAM4 dataset [Young et al. 2014]
 - GeneNetWeaver software
 - Time series data
 - Size 10, 100 Series 21

Normalisation should be the norm!

Network Size 50, Time Series Length = 1000

Normalised Time Series data

Results for DREAM4 (size 10) 0.8

Results for DREAM4 (size 10)

	ССМ	Correlation	GC	МІ	TE
1	0.55644	0.70667	0.55467	0.43733	0.69511
2	0.75676	0.60135	0.60557	0.52449	0.61149
3	0.55467	0.74756	0.4	0.49333	0.65067
4	0.67333	0.74625	0.46853	0.57742	0.43057
5	0.69231	0.79915	0.47436	0.55342	0.65491
Average	0.646702	0.720196	0.500626	0.517198	0.60855

ARACNE : AUROC = 0.668 (Young et al. 2014)

Results for DREAM4.9 (size 100) 0.8

Results for DREAM4 (size 100)

	ССМ	Correlation	GC	MI	TE
1	0.7279	0.75607	0.45483	0.5949	0.47637
2	0.64951	0.64629	0.52156	0.56015	0.53877
3	0.69577	0.71094	0.50553	0.54045	0.53193
4	0.61088	0.68933	0.53896	0.54633	0.52694
5	0.64136	0.71993	0.51951	0.57414	0.52895
Average	0.665084	0.704512	0.508078	0.563194	0.520592

ARACNE : AUROC = 0.589 (Young et al, 2014)

Pairwise Metrics of Causality A Summary

CCM and Correlation *seem* to work the best at a pairwise level

Naive Edge Selection

- (Since all pairwise metrics are directly proportional to the strength of causality,) sort ⁿC₂ edges by metric value in decreasing order.
- 2. Choose top-k edges and output as graph G.

Smart Edge Selection Future Work

Use a "sophisticated" algorithm which selects top-k edges, by making use of graph connectivity and other constraints information.

Intrinsic Graph Structure Estimation [Hino et al. 2015] Adjacency Matrix to Observation Matrix

 $f:\mathbb{R}^{n\times n}\to\mathbb{R}^{n\times n}$

 $\Theta \mapsto f(\Theta) = \Xi$

(Pairwise Metrics used here)

 $\xi_{ij} = c_i + c_{ij}\theta_{ij} + \sum_{k \in V} c_{ij}^k \theta_{ik} \theta_{kj} + \sum_{k,l \in V} c_{ij}^{kl} \theta_{ik} \theta_{kl} \theta_{lj} + \dots$ $t_{ij} = \xi_{ij} + \epsilon$

Intrinsic Graph Structure Estimation [Hino et al. 2015] The Random Walk Model

$$f(\Theta) = \alpha e^{\beta L(\Theta)}$$
$$\rho = \{\alpha, \beta\}$$

Intrinsic Graph Structure Estimation [Hino et al. 2015] Parameter Estimation Algorithm

$$J(\rho,\Theta) = \sum_{i,j\in V, i\neq j} \left(t_{ij} - [f(\Theta)]_{ij} \right)^2$$

In an EM style algorithm, iterating over k (number of edges in graph):

$$\Theta^{k} = f^{-1}(\Xi)$$
$$\rho_{k} = \operatorname*{arg\,min}_{\rho} J(\rho, \Theta^{k})$$

Intrinsic Graph Structure Estimation

Moving towards Multi-attribute Data

19

Intrinsic Graph Structure Estimation Moving towards Multi-attribute Data

$$g(\Theta) = cat({}^{1}f(\Theta), {}^{2}f(\Theta), \dots, {}^{r}f(\Theta))$$
$$J(\rho, \Theta) = \sum_{1 \le q \le r} \left(\sum_{i,j \in V, i \ne j} \left({}^{q}t_{ij} - {}^{q}[g(\Theta)]_{ij}\right)^{2}\right)$$

$$\Theta^{k} = \frac{\sum_{1 \le q \le r} q f^{-1}(\Xi)}{r}$$

$${}^{q}\rho_{k} = \underset{\rho}{\arg\min J(\rho, \Theta^{k})} \qquad \text{Id}$$

Ideally, Θ should be exactly mapped by every ${}^q\!f^{-1}(\Xi)$

Intrinsic Graph Structure Estimation Problems!

Intrinsic Graph Structure Estimation Intervention 1

Q. How to find the (unique) inverse of a polynomial of matrices?

Intrinsic Graph Structure Estimation Intervention 2

Solving EM in Primal Space

Random Walk on Dual for Graph Estimation Dual Graph Construction

CA BC CB AB BA AC n (n-1)² metalinks for n(n-1) linknodes

n(n-1) links for n nodes

Random Walk on Dual for Graph Estimation Dual Graph Construction

$$W_{CB \rightarrow BA} = W_{CB} S_B W_{BA}$$

Random Walk on Dual for Graph Estimation Use the Pagerank Random Walk Model

$$WS(V_{i}) = (1 - d) + d * \sum_{V_{j} \in In(V_{i})} \frac{w_{ji}}{\sum_{V_{k} \in Out(V_{j})} w_{jk}} WS(V_{j})$$

Pagerank on Dual for Graph Estimation Empirical Validation on DREAM4

	ССМ	Correlation	GC	MI	TE
Pairwise	0.55644	0.63378	0.72711	0.54489	0.38844
IGE	0.47289	0.58756	0.60044	0.35022	0.45244
Pagerank Dual	0.64089	0.63733	0.728	0.51111	0.48533

(There's still some) Future Work

- Some mysteries for Pairwise Metrics
- Mathematical validation of graph estimation
 - Why are the "important" links the "actual" links of causality?
- Essentially we're doing a clustering of edges
 - Can we fit this in a regular clustering paradigm?
- Biological information still hasn't been used!

Thank You

Questions and Feedback