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The story yet…

• Recall that we had a number of hand-designed features in 
our old feature space
– Aggregate statistics and counts
– Shape descriptors
– Frequency descriptors

• Possibly correlated/related
– Need for feature selection

• Big Question: What is the best representation of input data 
(feature space) from the POV of predicting HASS?
– Representation learning = Machine learning!
– But can we use domain knowledge to “add information” that 

helps separate the signal from the noise in a complex problem 
such as this, even before any “ML” is applied?
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What does respiration look like?
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Low HASS Breathing

High HASS Breathing



What does respiration look like?

• (Almost) a periodic signal

• Hypothesis: Breathing can be constrained in 
the domain of periodic signals, and high HASS 
can be seen as an “aberration” within this 
domain

– What counts as aberration? Depends…
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Representing Periodic Signals

• Any set of signals is represented on some “basis” 
which they can “span”

• Say time signals 𝑥(𝑡) of length 𝑛 have the basis 
ℝ𝑛

• We can change the representation by changing 
the “basis”
– PCA finds a basis of orthogonal vectors that maximize 

data variance
– For time signals, a basis corresponding to frequencies 

is a good idea
• Inverse domains
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Representing Periodic Signals

• Fourier Series: Express a periodic function as a 
weighted combination of sinusoids

– Each parameter is uncorrelated!
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Fourier Series Coefficients
Basis: ℝ × ℝ ×ℝ+𝑁 × ℝ𝑁

# parameters: 2*(N+1)
But most higher order parameters would be 0s!

(In our analysis we curtail N to 8)

𝑥(𝑡) = 𝐴0 +෍

𝑛=1

𝑁

𝐴𝑛 sin
2𝜋

𝑁
𝑛𝑓𝑡 + 𝐵𝑛



Representing Periodic Signals
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• Fourier Series



Representing (A)periodic Signals

• (Discrete) Fourier Transform: Express an 
(a)periodic (discretely sampled) function as a 
weighted combination of complex sinusoids
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𝑥(𝑡) = 𝐴0 + ෍

𝑛=1

𝑁−1

𝐴𝑛 cos
2𝜋

𝑁
𝑛𝑡 + 𝑖 sin

2𝜋

𝑁
𝑛𝑡

Discrete Fourier Transform
Basis: ℝ+𝑁

# parameters: N
But most parameters would be 0s! (sparse)



Representing (A)periodic Signals
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• (Discrete) Fourier Transform:



Representing (A)periodic Signals
which may not be sampled regularly

• Least Squares DFT: Express an (a)periodic 
(discretely sampled) function as a weighted 
combination of complex sinusoids while 
ensuring least squares fit

– Better than DFT for long-gapped/irregularly 
sampled data
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Representing (A)periodic Signals
which may not be sampled regularly
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• Least Squares DFT:



Representing (A)periodic Signals
whose spectra might be noisy

• Welch’s Method on DFT: Subdivide signal into 
smaller windows and compute the averaged 
DFT over frequency “bins”

– Better than DFT when spectrum is noisy (loss of 
frequency resolution but also reduction in noise)

– Also called Short-Time-Fourier-Transform (STFT)
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Representing (A)periodic Signals
whose spectra might be noisy
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• Welch’s Method on DFT:



Question

• Can we impose some stricter conditions to 
make the representation sparser (more 
efficient)?
– Hope: sparsity causes only the most significant 

information to be preserved in the transformation

• Answer: Discrete Cosine Transform
– Imposes a certain “boundary condition” on DFT 

that extends the signal in an even-periodic fashion

– Usually sparser than DFT
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Representing (A)periodic Signals
with more parsimony?

• (Discrete) Cosine Transform: Express an 
(a)periodic (discretely sampled) function as a 
weighted combination of real cosines
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𝑥(𝑡) = 𝐴0 + ෍

𝑛=1

𝑁−1

𝐴𝑛 cos
𝜋

𝑁
𝑛 𝑡 +

1

2

Discrete Cosine Transform
Basis: ℝ+𝑁

# parameters: N
But almost all parameters would be 0s! (very sparse)



Representing (A)periodic Signals
with more parsimony?
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• (Discrete) Cosine Transform:



Question

• Can we find a basis “better” than sinusoids?
– Hope: although the signal is periodic, there could be a 

more effective representation if the basis also reflects 
some notion of “shape” of the signal

• Answer: Discrete Wavelet Transform
– Uses a “wavelet” of a certain shape and expresses 

signal as a weighted combination of parametrized 
instances of the wavelets

– Since we incorporate shape within the basis itself, a 
more compact representation

– Captures both frequency and time regularity (trade-
off), unlike Fourier analysis
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Representing (A)periodic Signals
with both temporal and frequency resolution

• (Discrete) Wavelet Transform: Express an 
(a)periodic (discretely sampled) function as a 
weighted combination of wavelets

– STFT is a special case where wavelet is 𝑒−2𝜋𝑖𝑡
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𝑥(𝑡) = ෍

𝑚∈ℤ

෍

𝑛∈ℤ

𝑥, 𝜓𝑚,𝑛 𝜓𝑚,𝑛(𝑡) 𝜓𝑚,𝑛 𝑡 =
1

𝑎𝑚
𝜓

𝑡 − 𝑛𝑏

𝑎𝑚



Representing (A)periodic Signals
with both temporal and frequency resolution

• What wavelet to 
choose?
– Multiresolution 

analysis needs a 
biorthogonal filter 
(for some important 
mathematical 
properties to be 
satisfied)

– We choose bior6.8 
(notice its shape)

• Fix a=2, b=1
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• Wavelet’s scale allows us to play with time resolution
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Representing (A)periodic Signals
with both temporal and frequency resolution



• Wavelet’s scale allows us to play with time resolution
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Representing (A)periodic Signals
with both temporal and frequency resolution



Question

• How to best use this multiresolution Wavelet 
representation?

• Answer: An aside first…
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Aside: Fractals
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Aside: Fractals

• Self-similar structures

• Fine or detailed structure at arbitrarily small 
scales
– Leads to complex emergent properties

• Fracticality:
– Monofractal: a single parameter describes the 

dynamics

– Multifractal: a parameter spectrum describes the 
dynamics
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• 𝑓 𝑥 = 𝑎𝑥−𝑘, where k is the scaling exponent

• Scale invariance: 𝑓 𝑎𝑥 = 𝑐(𝑎𝑥)−𝑘= 𝑎−𝑘𝑓(𝑥)

• Universality: Diverse systems with same 
“critical” scaling exponent can be shown to 
share same fundamental dynamics

• Common in physics, biology, social networks…

– ECG, Neuronal spiking

Further aside: Power Law
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Aside: Fractals

• Monofractal: a single power law relationship 
– between moments of some multiresolution quantity T and 

moments of scale

𝑇 𝑎, 𝑥 𝑞~𝑎𝑞𝑘

(for small appropriate ranges of scale a and moment q [-5:5 here])

• Multifractal: a scale dependent power law distribution
– Can be expressed as a single power law distribution where 

instead of saying scale dependent (base in above 
expression), we say dependent on some function 𝜁 𝑞 of 
moments (exponent in above expression)

𝑇 𝑎, 𝑥 𝑞~𝑎𝜁 𝑞

(Monofractal is just a special case where 𝜁 is linear)
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Aside: Fractals
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• Multifracticality, therefore, 
is simply a departure from 
linearity of scaling 
exponents versus the qth

moments



Question

• What multiresolution quantity to use as T?

• Answer is in the previous question: How to 
best use the multiresolution Wavelet 
representation?

• Let T(x,a) represent the wavelet coefficients of 
signal x at scale a
– (Slightly incorrect; we use the average wavelet 

coefficient of the “leaders” of scale a, for some 
theoretical reasons…)
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The story so far…

• Instead of working in the time domain, we obtain 
a frequency representation of the signal which 
can be more compact

– Spectral analysis: Fourier series, DFT, LSSA, STFT, DCT

• We can work in a domain that does a trade-off in 
temporal and frequency resolutions and captures 
scale-free/self-similar properties of the signal

– Multifractal analysis: DWT followed by estimation of 
scaling exponents
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What does respiration look like?

• Hypothesis: Breathing can be constrained in the 
domain of periodic signals, and high HASS can be seen 
as an “aberration” within this domain
– What counts as aberration?

• In the two closely defined representation philosophies:
– Spectral analysis: an aberration is a dramatic change in the 

spectrum of the signal
• In the spectral coefficient values

– Multifractal analysis: an aberration is a dramatic change in 
the fractal spectrum of the signal
• In the linearity of scaling exponents versus moment
• Possibly: respiration becomes more multifractal during an 

asthmatic fit?
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Experiments

• Data: We use a smaller respiration dataset (which was used for 
artifact detection) which has HASS labels from 5 through 14, 
collected from 8 subjects, after removing corrupt signals

• Code: Spectral analysis and wavelet toolboxes in MATLAB
• Big Question: What is the best representation of input data (feature 

space) from the POV of predicting HASS? We judge the quality of a 
representation visually for now
– Spectral analysis: Do a PCA of high-D spectral coefficient space onto 2 

dimensions
– Multifractal analysis: Assume 𝜁 𝑞 up to first 3 terms

𝜁 𝑞 = 𝑘1𝑞 +
𝑘2𝑞

2

2
+
𝑘3𝑞

3

6
While 𝑘1 (first cumulant) captures linearity, 𝑘2 (second cumulant) 
captures extent of non-linearity (multifractality)
We do a 2 dimensional plot of the first two cumulants
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Experiments
PCA on old feature space’s Shape Descriptors
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Experiments
Old feature space’s Mean vs. Std Dev
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Experiments
Old Feature Space’s Freq vs. Energy
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Experiments
PCA on Fourier Series Coefficients (upto 8)
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With DC component Without DC component

• Unclear visual distinction
• Too few parameters?
• DC seems to have no effect



Experiments
PCA on DFT Spectrum
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With DC component Without DC component

• Clearer visual distinction

• DC seems to have no effect



Experiments
PCA on LSSA Spectrum
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• Clearer visual distinction



Experiments
PCA on STFT Spectrum
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• Clearer visual distinction
• Losing frequency resolution reduces error in the frequency space



Experiments
PCA on DCT Spectrum
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• Visual distinction not as clear

• DCT is too sparse?

With DC component Without DC component



Experiments
PCA on DCT Spectrum
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• Visual distinction not as clear

• DCT is too sparse?

With DC component Without DC component



Experiments
First and Second Cumulants on Multifractal Spectrum
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• Very clear visual distinction
• Trade-off of frequency-temporal resolution reduces error in both spaces



Experiments
First and Second Cumulants on Multifractal Spectrum
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• Very clear visual distinction
• Trade-off of frequency-temporal resolution reduces error in both spaces



Experiments
First and Second Cumulants on Multifractal Spectrum (zoom in)
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• First cumulant (slope) seems to distinguish between low to 
medium HASS scores



Experiments
First and Second Cumulants on Multifractal Spectrum (zoom in)
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• First cumulant (slope) seems to distinguish between low to 
medium HASS scores



Conclusions

• Frequency representation does elucidate a 
clearer HASS distribution

• Multifractal analysis provides us with a very 
small number (merely 2) of highly 
interpretable (uncorrelated) features which 
offer, visually, the most distinction between 
HASS levels
– Interesting hypothesis proposed (and confirmed?): 

An asthmatic fit is an increase in multifracticality
of the respiration signal
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Next steps

• With such a compact 2D representation of the 
respiratory waveform, almost any regular ML 
algorithm can be applied and made to work well 
(hopefully)
– Quantifiable (in)validation of hypothesis, rather than 

just visual

• Can departures from mono to multifracticality in 
ECG or/and PPG indicate HASS scores as well?
– If yes, is a combined 4D/6D representation going to be 

more effective?
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