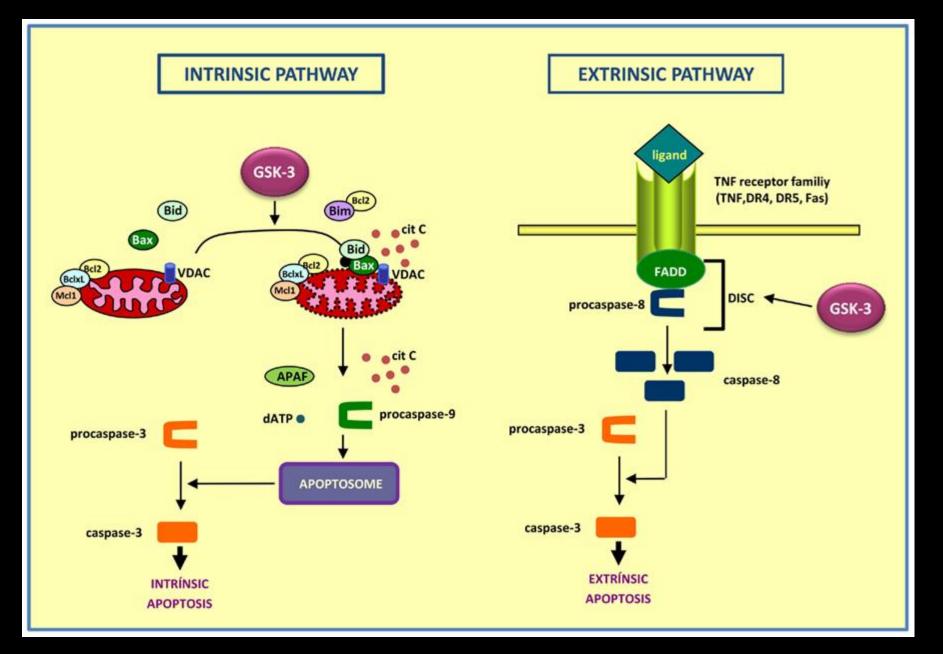
Game of Apoptosis

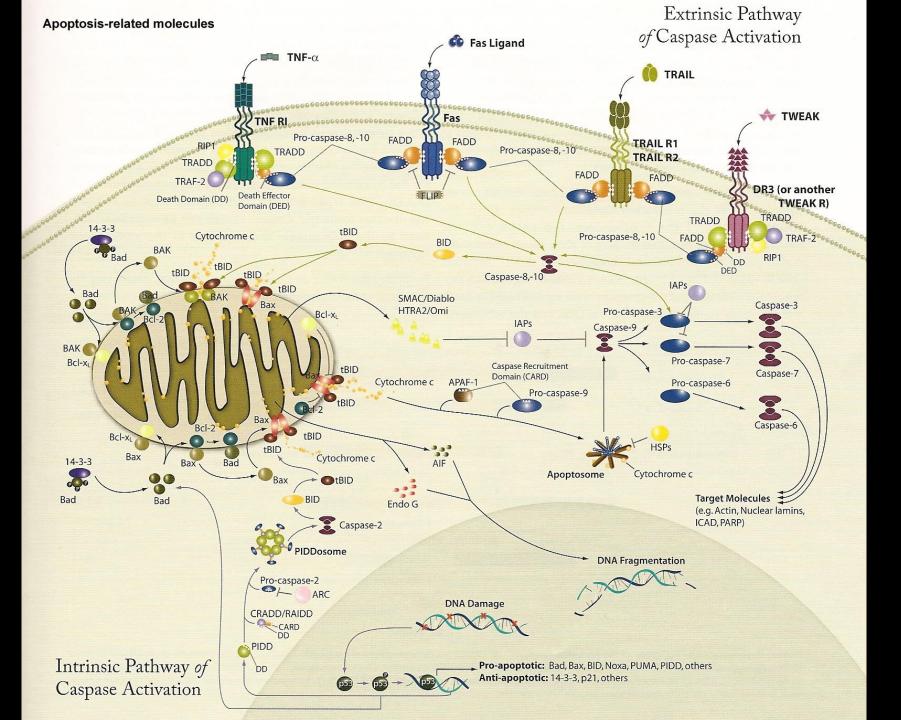
You Win or You Die

SAHIL LOOMBA SALIL SHARMA UTKARSH KUMAR JAUHARI

SBL702: Systems Biology, Term Paper Presentation, 19th November, 2014

Apoptosis - Background


- It is a process of 'Programmed Cell Death'
- Regulated via Biochemical mechanisms
- Vital processes:
 - Maintaining cell population in tissues
 - Removing the cells that are no longer needed
 - Removing dysfunctional cells
- A faulty apoptosis mechanism:
 - neurodegenerative diseases
 - ischemic damage
 - autoimmune disorders, cancer, etc.


Two Pathways

- Mitochondrial Regulation Intrinsic
 - Apoptotic proteins
 - → Mitochondrial swelling/membrane pores
 - ➔ Apoptotic effectors leak out
 - Cytochrome C from mitochondria
- Direct Signal Transduction Extrinsic
 - TNF Induced
 - Fas-Fas ligand-mediated model

Cell Degradation

- Organized degradation of cellular organelles by activated proteolytic caspases
- Breakdown of the proteinaceous cytoskeleton by caspases
- Pyknosis condensation of chromatin
- Karyorrhexis DNA fragmentation

Modelling the Pathway

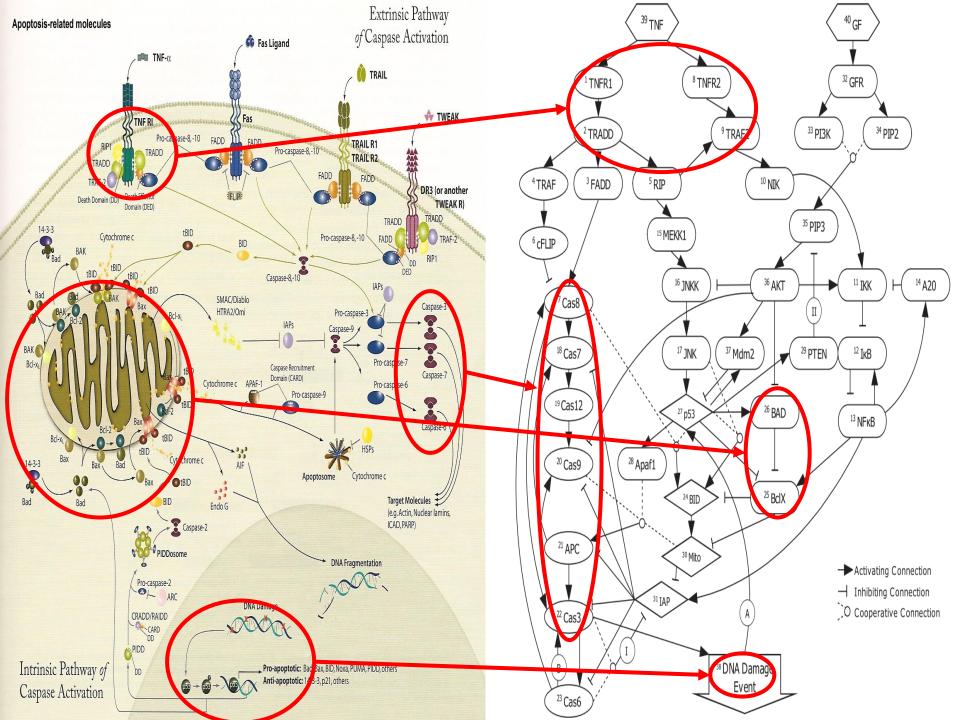
- Signal -> Surviving outcome OR Apoptosis
- Stability of the network [definite trigger]
- Irreversibility of the survival to apoptotic transition [Once started cannot be stopped, attributed to non-linear dynamics associated with feedback loops]
- ODE vs. Boolean Analysis
 - Complex dynamics
 - Not every system property is known
 - Difficult to explore the initial condition states
 - Building a complete big picture

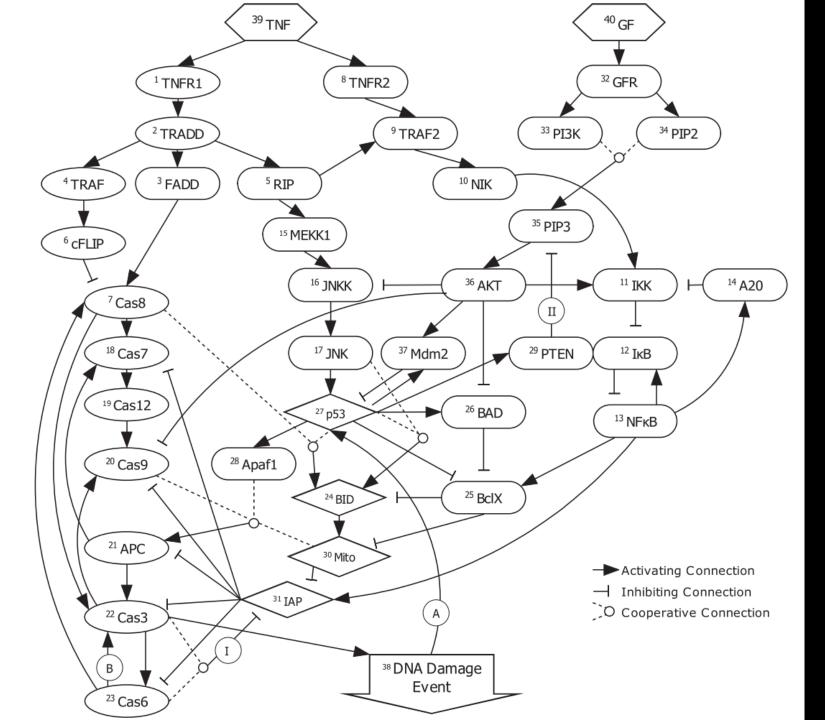
Apoptosis - Boolean Model

- 40 Nodes (including two inputs: TNF, GF and one output: DNA Damage Event)
- Both Anti Apoptosis and Pro Apoptosis pathways considered for a better picture
- Both Intrinsic and Extrinsic pathways considered for a complete picture*
- Identify key network components

*Model based on extensive literature review as well as expert-curated databases, especially *reactome*.

Contents lists available at ScienceDirect


Journal of Theoretical Biology


journal homepage: www.elsevier.com/locate/yjtbi

Boolean network-based analysis of the apoptosis network: Irreversible apoptosis and stable surviving

Rules of the Game

• Dynamics:

$$S_i(t+1) = \begin{cases} \text{OFF} & \text{if } A_i(t) < H_i(t), \\ \text{ON} & \text{if } A_i(t) > H_i(t), \\ S_i(t) & \text{if } A_i(t) = H_i(t). \end{cases}$$

- DNA Damage is a special case
- Ending criteria and ending states:
 - DNA damage event has remained continuously on for a predefined number of steps (APOP_THRESH)
 Apoptosis
 - Maximum number of steps have been reached (NUM_STEPS) → Survival

#	Node	Туре	Condition	Contribution
4	THERA	activating	TNF ON	1
1	TNFR1	inhibiting	TNF OFF	1
h		activating	TNFR1 ON	1
2	TRADD	inhibiting	TNFR1 OFF	1
3	TRAF	activating	TRADD ON	1
5	ТКАГ	inhibiting	TRADD OFF	1
4	FADD	activating	TRADD ON	1
4	FADD	inhibiting	TRADD OFF	1
5	RIP	activating	TRADD ON	1
J		inhibiting	TRADD OFF	1
6	cIAP	activating	TRAF ON	1
0	UAP	inhibiting	TRAF OFF	1
		activating	FADD ON	1
7	Cas8	activating	Cas6 ON	1
		inhibiting	cIAP ON	1
8	TNFR2	activating	TNF ON	1
0		inhibiting	TNF OFF	1
		activating	RIP ON	1
9	TRAF2	inhibiting	TNFR2 ON	2
			RIP OFF	1
10	NIK	activating	TRAF2 ON	1
10	INTIN	inhibiting	TRAF2 OFF	1
		activating	NIK ON	1
			Akt ON	1
11	IKK	inhibiting	A20 ON	3
			NIK OFF and Akt OFF	1

	ne	etwork -	Note	pad		-		×	
File	Edit	Format	View	Help					
1		39	1		1		1	^	
1		39	-1		0		1		
2		1	1		1		1		
2		1	-1		0		1		
3		2	1		1		1		
3		2	-1		0		1		
4		2	1		1		1		
4		2	-1		0		1		
5		2	1		1		1		
5		2	-1		0		1		
6		3	1		1		1		
6		3	-1		0		1		
7		4	1		1		1		
7		23	2		1		1		
7		6	-1		1		1		
8		39	1		1		1		
8		39	-1		0		1		
9		5	1		1		1		
9		8	-1		1		2		
9		5	-2		0		1		
10		9	1		1		1		
10		9	-1		0		1		
11		10	1		1		1		
11		36	2		1		1		
11		14	-1		1		3		
11		10	-2		0		1		
11		36	-2		0		1		
<								>	:

Initialising the Game

- Initial States
 - 2³⁷? Random initial states; probability of 0.5
 - Simulated using many initial states to get good statistics
 - How much is good enough?
- Input Signals

 No input 	TNF OFF	GF OFF	00
 Only TNF 	TNF ON		01
 Only GF 		GFON	10
 Both TNF & GF 	TNF ON	GF ON	11

Metrics for Network Evaluation – Part 1

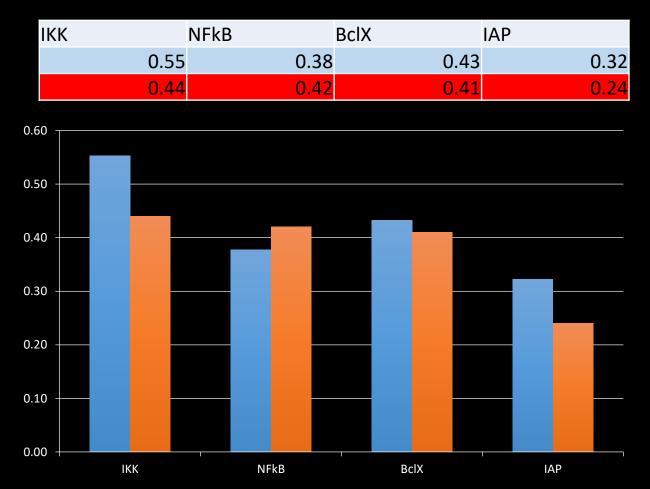
- Lethal States:
 - Initial states that, independent of input, always end up in apoptosis. Natural?
- Apoptosis Ratios:
 - For each of the 4 signal combinations, evaluate the "probability" of state ending in apoptosis.

 $Apop\% = \frac{Number of apoptotic initial states}{Total number of initial states} \times 100\%$

- p(ON/lethal_state)
- Knockout experiments: removal of edges

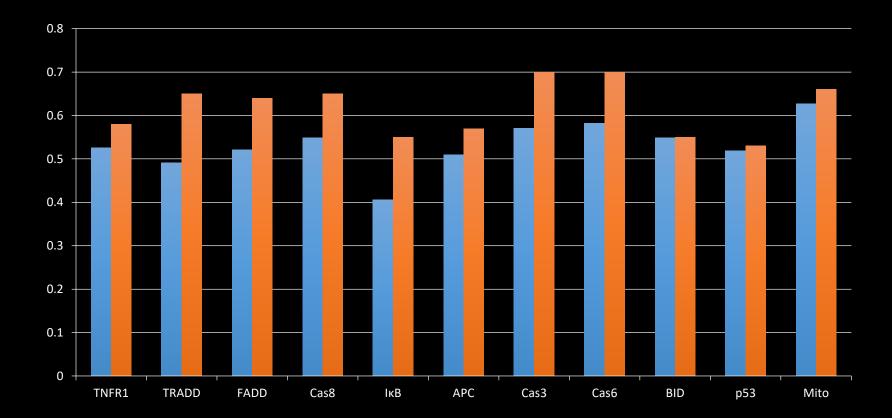

• Apoptotic Ratio:

				Double	# lethal
Comments	No signal	GF only	TNF only	Input	states
IS=1000	53.6	53.3	70.7	66.4	
	0.64	0.21	34.05	24.84	533
IS=5000	55.98	55.76	69.94	66.28	
	0.99	0.49	32.39	24.16	2777
	55.19	55.07	70.59	66.78	
IS=10000	0.93	0.66	34.98	26.55	5477
	48	47	97	64	
IS=20000	55.575	55.415	71.1	67.225	
13 20000	1.00	0.65	35.60	26.96	11025


• Apoptotic Ratio

Comments	00	01	10	11
	57.05	56.96	74.89	75.99
IS=10,000 / A	0.88	0.67	42.05	44.59
	48	47	97	62
	68.93	68.93	97.99	97.99
IS=10,000 / B	0.00	0.00	93.53	93.53
	22	22	97	58
	55.94	55.87	70.95	68.54
IS=10,000/ I	0.97	0.81	34.70	29.29
	18	15	97	54
	54.61	54.6	69.38	69.27
IS=10,000/ II	0.90	0.87	33.14	32.90
	47	47	97	60

 p(ON/lethal_state) for important nodes: Pro-Apoptotic


 p(ON/lethal_state) for important nodes: Pro-Survival

 p(ON/lethal_state) for important nodes: Pro-Survival – B loop elimination

TNFR1	TRADD	FADD	Cas8	ΙκΒ	APC	Cas3	Cas6	BID	p53	Mito
0.53	0.49	0.52	0.54	0.40	0.51	0.57	0.58	0.55	0.52	0.63
0.58	0.65	0.64	0.65	0.55	0.57	0.7	0.7	0.55	0.53	0.66

Metrics for Network Evaluation – Part 2, an extension

- Lethal States:
 - Must be dealt with for better network evaluation.
 - Attach probabilities to initial states based on previously learned classification parameters of lethal and non-lethal states.
- Apoptosis Ratios:
 - A better picture would be to only consider non-lethal states in our sample space.
 - $Apop\% = \frac{Number \ of \ apoptotic \ and \ non-lethal \ initial \ states \ X100}{}$

Total number of non–lethal initial states

 Studying irreversibility of apoptosis: the dna damage run switch

DNA_damage_run 'Switch' Win or Die?

- We found out the expectation of the maximum DNA-damage-run in the states that end in survival, and not apoptosis.
- Turned out to be very small (see table below).
- Maximum of maximum of DNA-damage-run only 2.
- Switch 2->20 : Survival ->Apoptosis

Comments	No signal	GF only	TNF only	Double Input
Avg_DNA_Damage IS=10000	0.39267134	0.39521769	0.56568458	0.50979192
Avg_DNA_Damage IS=1000	0.42307692	0.42792793	0.60915493	0.55417957
Avg_DNA_Damage IS=100	0.36363636	0.36363636	0.46875	0.43243243

Failures

- Potential Weakness of network: Removal of nodes experiments?
- [No perfect matchings to the given paper.]
- Better treatment of lethal states.

Future Work

- Ranking nodes according to importance.
- Parametrisation of Lethal States.

Game Over Questions?