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Overview
● Brief Perspective on Modeling in Biology

● Systems Biology: Discovery of biological mechanisms

○ Markov Interaction Network: Uncertainty meets Knowledge

○ Hypothesis discovery as arbitrary probabilistic queries

● Synthetic Biology: Design of bioengineered parts

○ Language embedding models to represent biomolecules

○ Design challenges as arbitrary downstream machine learning

● Closing the loop on iterative discovery and design

○ Organism-on-Chip for high-throughput drug discovery
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Biology Exhibits Hierarchical Compositionality
Principle of Abstraction

6

f

f-1



Biology Exhibits Hierarchical Compositionality
TRANSCRIPTION 

TRANSLATION

REACTION

REGULATION

INTERACTION

7



Biology Exhibits Hierarchical Compositionality
TRANSCRIPTION 

TRANSLATION

REACTION

REGULATION

INTERACTION

8

DISCOVERYDESIGN

SYNTHETIC 
BIOLOGY

SYSTEMS 
BIOLOGY

PHENOTYPEGENOTYPE



Problems of Discovery in Systems Biology
TRANSCRIPTION 

TRANSLATION

REACTION

REGULATION

INTERACTION
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Biology: A Modeling Perspective
A Typical “Machine Learning” 

Problem

● Clearly defined input and output
● Large amount of data (usually 

cheap to acquire)
● Availability of labels: supervised
● Problems in medical biology at 

phenotype level
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Atypical “Machine Learning” 
Problem

● Arbitrary query of interest
● Small amount of data (usually 

expensive to acquire)
● Few to no labels: 

semi-supervised
● Problems in systems and 

synthetic biology at genotype 
level



Work at Wyss: A Biological Perspective

● Discovery (Systems Biology)
○ Mechanism of tolerance to pathogens
○ Countermeasures to induce tolerance

● Design (Synthetic Biology)
○ Protein Stability Problem
○ Riboswitch Design Challenge

● Diagnostics (Medical Biology)
○ Predicting breathing severity in Asthma
○ Mass Spec for Pathogen Detection
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Typical Machine Learning | case-in-point
Predicting Breathing Severity in Asthma
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Typical Machine Learning | case-in-point
Predicting Breathing Severity in Asthma
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Low Severity 
Breathing is 
Monofractal

High Severity 
Breathing is 
Multifractal

Simple ML model on this 2D space gives 
prediction accuracies of upto 97%

LOW SEVERITY

HIGH SEVERITY



Atypical Machine Learning | case-in-point
MALDI-TOF MS for Pathogen Detection
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Shannon Duffy
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Atypical Machine Learning | case-in-point
MALDI-TOF MS for Pathogen Detection
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Cluster Frequency 
Weighting

Cluster Proportion 
Weighting

BLIND
LIBRARY

Accuracy of 100% on a Probabilistic Model with 12 blind samples
Shannon Duffy



Core Tenets for Mathematical Representations in Biology

● Biology is uncertain and stochastic
● Biology is not discrete
● Biology is complex, but has some core 

underlying “latent” principles that govern 
“observed” complex phenomena 

● Explicitly incorporate uncertainty through 
probabilistic modeling

● Develop “soft”, continuous and distributed 
representations

● Include domain knowledge to define 
structure of core variables that generate 
evidence

21
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drug2gene                 gene2phene

Uncertainty Meets Knowledge
With Great Knowledge Comes Great Power

22

gene

CTD, LINCS, KEGG, 
Gene Ontology

drug

CTD, LINCS 

phene

Gene Ontology

OMICS MORPHOMETRICSMECHANISMSTHERAPIES



Uncertainty Meets Knowledge: NeMoCAD
Network Model for Causality Aware Discovery

● Network of interactions between genes encode 
routes of causal mechanistic influence in a 
biological system

● Probabilistic weights obtain from gene knockout 
and/or overexpression data encode weight of 
causal interactions to form a Markov Network

● Arbitrary mechanistic queries can be turned into 
corresponding probabilistic inference queries for 
discovery

● Adding drugs as nodes of the network also allows 
us to discover new drug therapies 23
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Uncertainty Meets Knowledge: NeMoCAD
Network Model for Causality Aware Discovery
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Uncertainty Meets Knowledge: NeMoCAD
Drug Discovery | gene2drug

25MARKOV INTERACTION NETWORK

LOOPY BELIEF PROPAGATION



Uncertainty Meets Knowledge: NeMoCAD
Drug Discovery | gene2drug

26MARKOV INTERACTION NETWORK

LOOPY BELIEF PROPAGATION



Uncertainty Meets Knowledge: NeMoCAD
Drug Combination Investigations | gene2drug
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Uncertainty Meets Knowledge: NeMoCAD
Drug Synergy Contextualized by Gene Space | drug2drug
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Synergy

Orthogonality

Antagonism



Uncertainty Meets Knowledge: NeMoCAD
Incorporating Gene Ontology | gene2phene
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Uncertainty Meets Knowledge: NeMoCAD
Transcriptomics to Therapy and Phenotype | gene2drug+phene
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Therapies to counter effects of Radiation

● Pick a condition to antagonize: 8 Gy → 16 Gy
● Run differential gene expression analysis → Input fold-changes + p-values into probabilistic model 

NeMoCAD to obtain drug therapies
● Enrich for phenotypes using Gene Ontology

0 Gy 8 Gy 16 Gy

Vishal Keshari



Uncertainty Meets Knowledge: NeMoCAD
Transcriptomics to Therapy and Phenotype | gene2drug+phene

31

Top enriched phenotypes: gene2phene

1. Cholesterol monooxygenase activity
2. Helicase activity (important for DNA repair), regulation of 

response to DNA damage and integrity
3. Muscle cell fate specification, visceral muscle development

Top drugs selected: gene2drug

1. Dexrazoxane, a chemotherapy protective drug that is shown 
to reduce tissue damage.

2. Mercaptopurine, an immunosuppressive chemotherapy 
drug used to treat acute lymphatic leukemia

3. Atropine, an involuntary nervous system blocker
4. Ifosfamide, a chemotherapy drug used in treating multiple 

cancers
5. Pregnenolone, an endogenous steroid that is a precursor to 

most other steroid hormones

0 Gy 8 Gy

16 Gy



Uncertainty Meets Knowledge: NeMoCAD
drug+phene2gene
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Uncertainty Meets Knowledge: NeMoCAD
phene2drug
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Uncertainty Meets Knowledge: NeMoCAD
drug2phene
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Urethane



Uncertainty Meets Knowledge: NeMoCAD
drug2phene
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Emodin
Urethane

Benzoic Acid

Benzoic Acid Bisphenol A Emodin



Problems of Design in Synthetic Biology
TRANSCRIPTION 

TRANSLATION

REACTION

REGULATION

INTERACTION
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Representing Biomolecules as Symbolic Sequences
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● Proteins are simply Amino Acid sequences: VPLLGLY…
● Genes/mRNAs are simply Nucleotide sequences: AATCGGTA…
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● Using language models for “representing” arbitrary biomolecules as mathematical entities

○ AA : Sequences = Words : Sentences

word2vec, Mikolov et al. (2013)



Representing Biomolecules as Symbolic Sequences
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● Proteins are simply Amino Acid sequences: VPLLGLY…
● Genes/mRNAs are simply Nucleotide sequences: AATCGGTA…
● Using language models for “representing” arbitrary biomolecules as mathematical entities

○ AA : Sequences = Words : Sentences
● One simplifying assumption: local neighborhood decides global high-level properties
● Unsupervised: predict context words from current word

word2vec, Mikolov et al. (2013)



Representing Biomolecules as Symbolic Sequences
prot2vec: a Learnt Space of Proteins
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prot2vec
100-d

93,588 AA sequences from 
Homo sapien Proteome

VPLLGLY… <0.21, -0.32, …, 0.74>



Representing Biomolecules as Symbolic Sequences
prot2vec: a Learnt Space of Proteins
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prot2vec
100-d

VPLLGLY… <0.21, -0.32, …, 0.74>

Any 
Machine 
Learning 
Model

Protein Family

Protein Topology

Protein Stability



Representing Biomolecules as Symbolic Sequences
prot2vec predicts Protein Families

Insight: proteins close in sequence 
space → close in prot2vec space → 
close in function space
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prot2vec
100-d

<-0.12, 0.78, …, 0.56>

Nearest 
Neighbor 
Classifier

Protein Family

Protein Topology

Protein Stability

324,017 AA 
sequences from 

SwissProt across 
7027 protein families 73.2% accuracy



Representing Biomolecules as Symbolic Sequences
prot2vec estimates Protein Stability
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prot2vec
100-d

<0.29, -0.10, …, 0.98>

Deep 
Neural 
Network 
Regressor

Protein Family

Protein Topology

Protein Stability

16,174 AA 
sequences from 

Rocklin et al. 
(2017) 0.54 R2 value



Representing Biomolecules as Symbolic Sequences
prot2vec captures Protein Topologies

44Experimental Data from Rocklin et al. (2017)

Insight: proteins close in sequence 
space → close in prot2vec space 
→ close in topology space



Representing Biomolecules as Symbolic Sequences
prot2vec correlates to Biophysical Parameters
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Reference 
Energies for 

AA Types

Solvation 
Energy

Attractive 
Energy

HydrophobicityOrientation 
Dependent 
Solvation

Electrostatic 
Energy

(PCA)

Question: What do these 100 dimensions mean? Are they arbitrary?



Representing Biomolecules as Symbolic Sequences
ribo2vec: a Learnt Space of Riboswitches

46

ribo2vec
10-d

49,159 mRNA sequences of 
natural Riboswitches

AATCGGTA… 

<0.09, -0.17, …, 0.94>



Representing Biomolecules as Symbolic Sequences
ribo2vec: a Learnt Space of Riboswitches
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ribo2vec
10-d

49,159 mRNA sequences of 
natural Riboswitches

AATCGGTA… 

<0.09, -0.17, …, 0.94>



Representing Biomolecules as Symbolic Sequences
ribo2vec correlates to Biophysical Parameters
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Question: What do these 10 dimensions mean? 
Are they arbitrary?

Visualize 192 mRNA design sequences to detect 
DNT/TNT

Insight: some “arbitrary” dimensions of ribo2vec 
correlate with experimental activation ratio

(t-SNE)

(PCA)

Experimental Data from Howard Salis



Representing Molecules as Symbolic Sequences
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● Problem: arbitrary metabolites, small 
molecules, drugs, ligands and 
carbohydrates are NOT simple linear 
sequences

● Solution: Simplified Molecular-Input 
Line-Entry System (SMILES) 
representation

CC(C)(C1=CC=C(C=C1)O)C2=CC=C(C=C2)O

Bisphenol A

Ciprofloxacin



Representing Molecules as Symbolic Sequences
chem2vec: a Learnt Space of Chemicals
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chem2vec
100-d

First 1 million chemicals 
from PubChem

C(C)C1=C… <-0.66, -0.67, …, 0.42>



Representing Molecules as Symbolic Sequences
chem2vec: a Learnt Space of Chemicals
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chem2vec
100-d

C(C)C1=C… <-0.66, -0.67, …, 0.42>

Any 
Machine 
Learning 
Model

Drug Family

LINCS Gene 
Probabilities

Protein-Binding 
Glycans



Representing Molecules as Symbolic Sequences
chem2vec encodes Chemical Valencies
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Visualizing just 
“atomized” 
chemical species



Representing Molecules as Symbolic Sequences
chem2vec
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Visualizing just 
“atomized” 
chemical species

Encodes 
chemical 
valencies?



Representing Molecules as Symbolic Sequences
chem2vec correlates to Molecular Properties
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Question: What do these 100 dimensions mean? Are they arbitrary?

Molecular 
Weight

(PCA)

Number of 
Hydrogen Bond 

Acceptors

Hydrophobicity
Polarity



Representing Molecules as Symbolic Sequences
chem2vec correlates to Molecular Properties

55

Linear Correlation between molecular properties and chem2vec dimensions

Molecular 
Weight Volume

Hydrophobicity
Polarity



Representing Molecules as Symbolic Sequences
chem2vec serves as a drug query engine
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Say we have drug candidates we find improving tolerance , and we wish to explore drugs “similar” to them 
in the functional space, but potentially better in PK/PD and toxicity

“Miracle” 
Drug for 
Xenopus

DFOA



Putting It Back Together
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Drugs
Gene

PhenePathogen

Signal
Protein

OmicsNETWORKS GENE 
ONTOLOGY

Morphometrics



Putting It Back Together
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Drugs
Gene

PhenePathogen

Signal
Protein

OmicsNetworks Gene Ontology

Morphometrics

NETWORKS GENE 
ONTOLOGY

chem2vec

gene2vec

prot2vec



Putting It Back Together
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Drugs
Gene

PhenePathogen

Signal
Protein

Networks Gene Ontology

Morphometrics

Networks Gene Ontology
NETWORKS GENE 

ONTOLOGY

chem2vec

gene2vec

prot2vec



Wyss Institute’s Organs-on-Chips
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Xenopticon: Organism-on-Chip
High-Throughput Xenopus embryo analyzer

61Youngjae Cho, Bret Nestor, Richard Novak

Capability to image >700 embryos every 15 min in 16 colors
Results in 100s – 1,000s of metrics per embryo per time-point

https://docs.google.com/file/d/1H2vOV5bKLguuKmjDrsj0u3xC9BL0u4oJ/preview
https://docs.google.com/file/d/1LKymVfchXr94PPcVyS-1hyIkAhVJE3Qp/preview


Xenopticon: A Cheaper Route to Drug “Design”
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DRUG DEVELOPMENT 
(R&D)
$1-10B per drug, 10 years per 
drug

3

GENOTYPE DATA
(TRANSCRIPTOMICS)
$1-10K per sample, 1 month 

per sample

2

PHENOTYPE DATA 
(XENOPTICON)
$1-10 per image, 1 second 
per image

1



Xenopticon: Acquire Phenotype Metrics
Estimate Embryo Viability

63Vishal Keshari, Alex Dinis



Xenopticon: Acquire Phenotype Metrics
Estimate Embryo Viability
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Classifier on Embryo’s Spectrum 
→ Hidden Markov Model

ALIVE DEAD
93% accuracy on held-out test image sequences

Bret Nestor



Xenopticon: Acquire Phenotype Metrics
Obtain Survival Curves

65Bret Nestor

https://docs.google.com/file/d/1nvgf--BzCy6pBnmQw6yrghYgHI-AE5-f/preview


Xenopticon: Acquire Phenotype Metrics
Track Tissue Development

66Bret NestorDeepMind



GFP expressing Macrophages to track spatiotemporal dynamics of “immune response”

Xenopticon: Acquire Phenotype Metrics
Making the Invisible, Visible | Visual Tracking of Immune Response
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Vishal Keshari

https://docs.google.com/file/d/1HQ-i661kF11nwhOkPfDh70Ibk0reBoqS/preview
https://docs.google.com/file/d/1-TXUML3vYpbeR3rQ4xLgWvArAVMTdacm/preview


Xenopticon: Acquire Phenotype Metrics
Making the Invisible, Visible | Visual Tracking of Pathogen Infection
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mCherry expressing E. coli 
bacteria to track 
spatiotemporal dynamics of 
“pathogen infection”

Vishal Keshari, Alex Dinis

https://docs.google.com/file/d/1fY1U4Q5yGEM6lzbEr-b4CqU2tewdDtPg/preview


Xenopticon + NeMoCAD = XenoDoc
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Drugs
Gene

Phene
Protein

Networks Gene Ontology
Networks Gene OntologyNetworks Gene Ontology

NETWORKS GENE 
ONTOLOGY

Morphometrics

Bret Nestor

Pathogen

Signal



Iterative Discovery and Design
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gene2drug Xenopticon

phene2gene

Mechanism 
Discovery & 
Drug Design

PHENOTYPE 
METRICS

DRUG 
CANDIDATES

GENOTYPE 
MECHANISMS

(Xenopus + Pathogens)



Iterative Discovery and Design
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gene2drug Xenopticon

phene2gene

Mechanism 
Discovery & 
Drug Design

PHENOTYPE 
METRICS

DRUG 
CANDIDATES

GENOTYPE 
MECHANISMS

(Xenopus + Pathogens)
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Thank You, Questions?


