

The Many Folds of Cognition

A Topological Perspective on Form Learning

Anshul Bawa Sahil Loomba

Questions around Cognition

- How do we learn inductively?
- Given time and resource constraints, which heuristics do we use for "efficient computation"?
- Are different percepts organised semantically in our cognitive system?

Questions around Cognition

- How do we learn inductively?
 - FULL BAYESIAN LEARNING
- Given time and resource constraints, which heuristics do we use for "efficient computation"?
 - FEATURE COMPACTION
- Are different percepts

 organised semantically in our
 cognitive system?
 FORM LEARNING

Cognitive Heuristics

Deviations from perfect rationality

- Representativeness Heuristic
- Availability Heuristic

Compact Knowledge Representation

Memory - Percepts to concepts

Semantic gist-of-things

Information aggregation

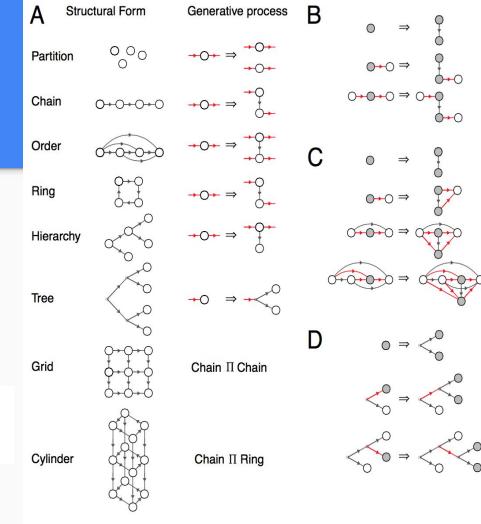
Form Learning [Kemp Tenenbaum '08]

Unified framework - Graph grammar

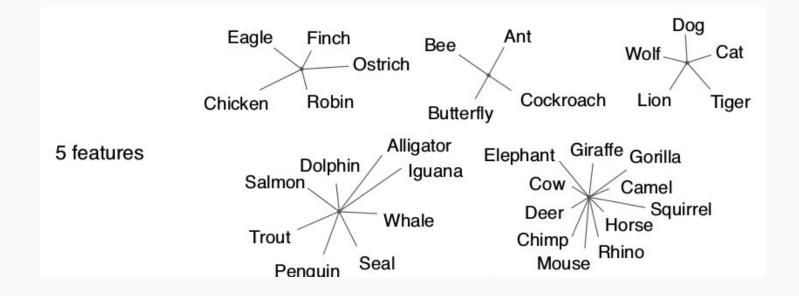
Dataset - Animal features

Learning on raw data

 $P(S, F|D) \propto P(D|S)P(S|F)P(F).$

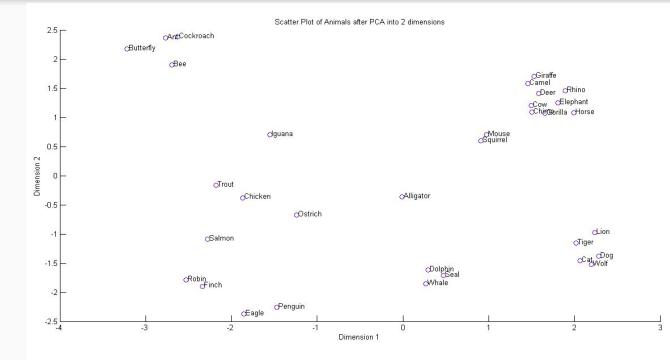


Dimensionality Reduction Naive - Subset of Features



Dimensionality Reduction Linear - Principal Component Analysis

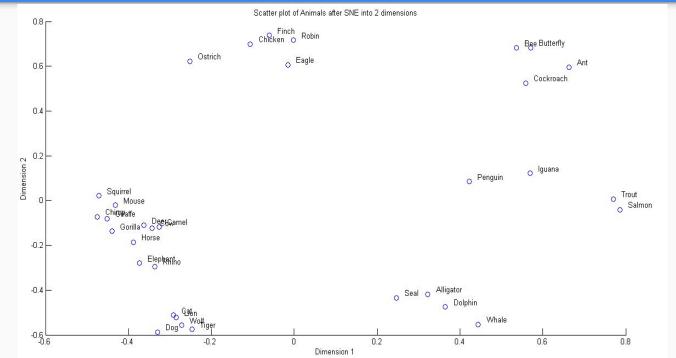
Resolves data into orthogonal dimensions using purely covariance



Dimensionality Reduction Manifold - Stochastic Neighbour Embedding

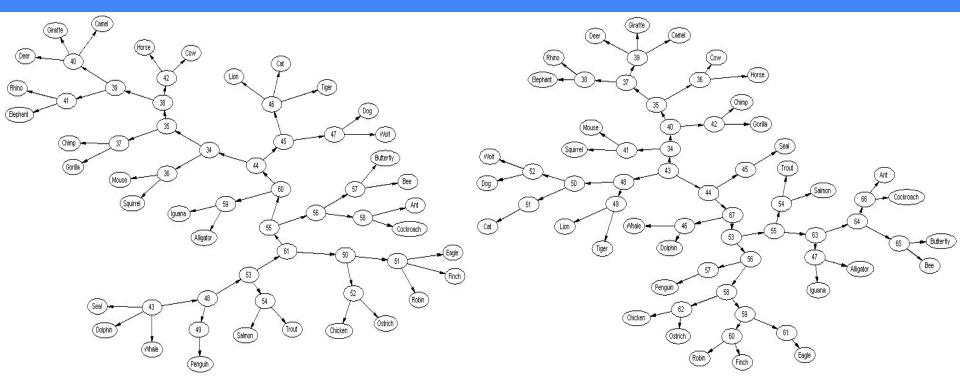
Centers a Gaussian at every point in high-dimensional space

Preserves density map in lower-dimensional space

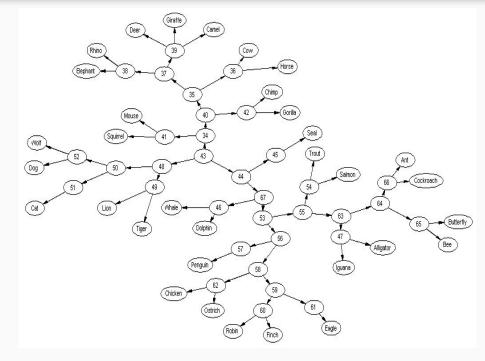


9

Why Manifolds Work Tree Structure Likelihood: SNE over Ground



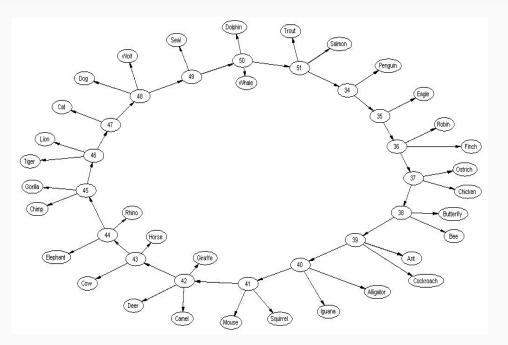
Why Manifolds Work Tree Similarities: SNE over PCA



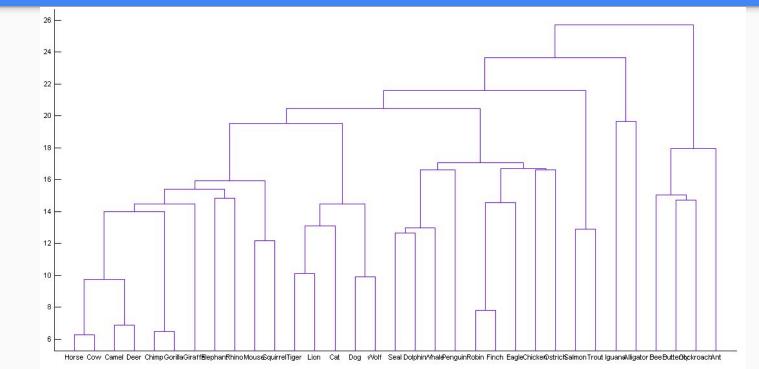
Dimensionality Reduction Method	Similarity of tree to true tree (lower is better)
PCA-2	0.9303
PCA-4	0.9327
PCA-8	0.9396
SNE-2	0.9280
SNE-4	0.9249
SNE-8	0.9063

Why Manifolds Work Ring (False) Learning: SNE over Ground

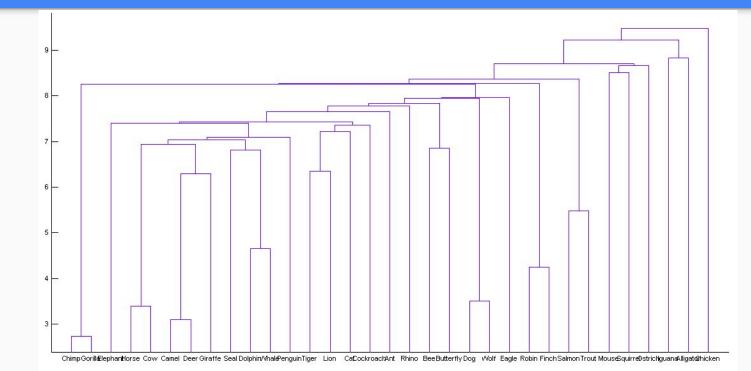
Dataset	Log of relative likelihood of tree w.r.t ring (higher is better)
Ground	-2.7
SNE-4	1.7



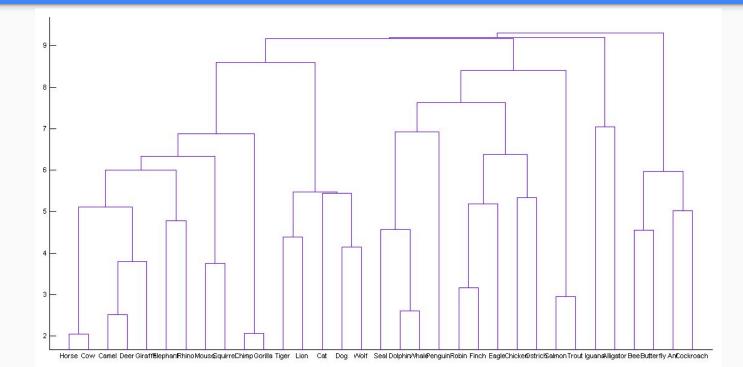
Why Manifolds Work Hierarchical Agglomerative Clustering - Ground



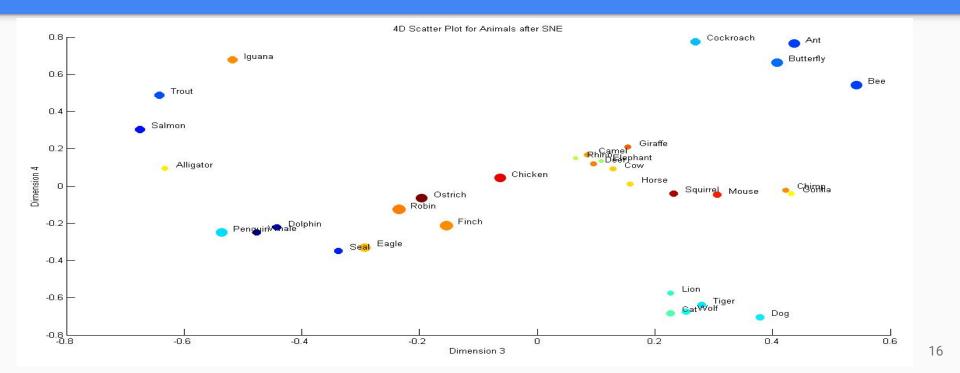
Why Manifolds Work Hierarchical Agglomerative Clustering - PCA



Why Manifolds Work Hierarchical Agglomerative Clustering - SNE



Why Manifolds Work Representativeness Heuristic



Why Manifolds Work Discriminating Features and the Availability Heuristic

S.No	List of discriminating features	Type of feature
1	has a large brain	Anatomical (visible)
2	has 6 legs	Anatomical (visible)
3	has a nose	Anatomical (visible)
4	has paws	Anatomical (visible)
5	has antennae	Anatomical (visible)
6	is long	Anatomical (visible)
7	is large	Anatomical (visible)
8	has tusks	Anatomical (visible)
9	is slender	Anatomical (visible)
10	has horns	Anatomical (visible)
11	has hooves	Anatomical (visible)
12	is poisonous	Anatomical
13	is soft	Anatomical (visible)
14	is black	Anatomical (visible)
1.5	ic a radort	Anotomical (vigible)

18	is an insect	Anatomical (visible)
19	is scaly	Anatomical (visible)
20	is furry	Anatomical (visible)
21	has flippers	Anatomical (visible)
22	is colorful	Anatomical (visible)
23	is a canine	Anatomical (visible)
23	is strong	Behavioural
25	howls	Behavioural
26	travels in groups	Behavioural
27	is dangerous	Behavioural
28	digs holes	Behavioural
29	eats grass	Eating habits
30	eats leaves	Eating habits
31	eats bugs	Eating habits
32	eats fish	Eating habits
0.0	lives in lakes	Habitat

Why Manifolds Work Discriminating Features and the Availability Heuristic

Fraction of total	All features	Discriminating features
Anatomical	0.57	0.64
Visible anatomical (as fraction of anatomical)	0.83	0.96
Behavioural	0.24	0.13

Tying it all together Manifolds, Typicality, Bayesian cognition, Form learning

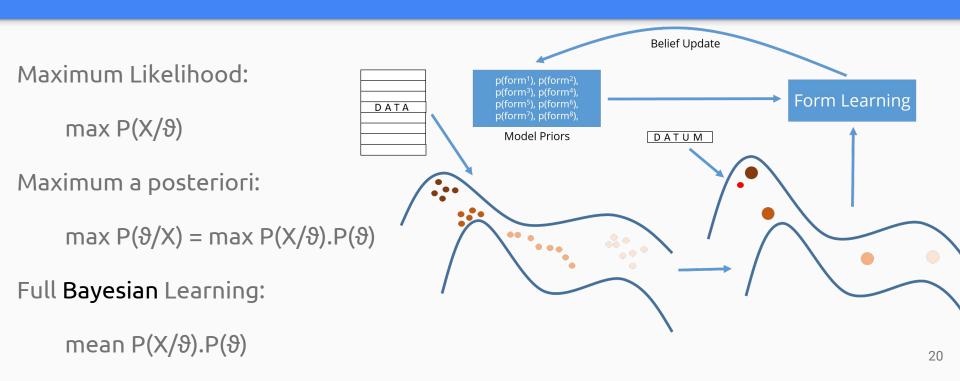
Tradeoff : Generality of gist-extraction vs. Generality of graph grammars.

Model <- Parameters <- Hyperparameters <- Gist <- Features <- Data

Typicality not only in Learning, but in Inference

Modelling not only what we do right, but also what we do wrong

On Inductive Learning From ML, to MAP, to Full Bayesian Learning



In Conclusion

"Indeed, the human mind appeared to suffer from a crippling need to fabricate in the absence of concrete proof."

- J. R. Ward

Thank You