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Questions
around
Cognition

How do we learn inductively?
Given time and resource
constraints, which heuristics
do we use for “efficient

computation”?

Are different percepts
organised semantically in our
cognitive system?




Questions
around
Cognition

How do we learn inductively?
o FULL BAYESIAN LEARNING

Given time and resource
constraints, which heuristics
do we use for “efficient
computation”?

o FEATURE COMPACTION
Are different percepts
organised semantically in our

cognitive system?
o FORM LEARNING




Cognitive Heuristics

Deviations from perfect rationality

e Representativeness Heuristic

e Availability Heuristic



Compact Knowledge Representation

Memory - Percepts to concepts

Semantic gist-of-things

Information aggregation



A Structural Form Generative process B

Form Learning o Y

[Kemp Tenenbaum ‘08]
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Dimensionality Reduction
Naive - Subset of Features
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Dimensionality Reduction
Linear - Principal Component Analysis

Scatter Plot of Animals after PCA into 2 dimensions
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Dimensionality Reduction
Manifold - Stochastic Neighbour Embedding

Centers a Gaussian
at every pointin
high-dimensional
space

Preserves density
map in
lower-dimensional
space
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Scatter plot of Animals after SME into 2 dimensions
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Why Manifolds Work




Why Manifolds Work

Tree Similarities: SNE over PCA
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Why Manifolds Work

Ring (False) Learning: SNE over Ground

Dataset Log of relative likelihood of tree =
w.r.t ring (higher is better)

Ground -2.7

SNE-4 1.7
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Why Manifolds Work

Hierarchical Agglomerative Clustering - Ground

: L% [ ] H 13

Horse Cow Camel Deer ChimpGorillaGiraffElephanfhinoMouseSguirrelTiger  Lion  Cat  Dog  wWiolf  Seal DolphindvhalfenguinRokin Finch EagleChickesdstrictealmon Trout lguanstlligstor Bee Butteffhekroackint




Why Manifolds Work

Hierarchical Agglomerative Clustering - PCA
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Why Manifolds Work

Hierarchical Agglomerative Clustering - SNE




Why Manifolds Work

Representativeness Heuristic

40 Scatter Plot for Animals after SNE
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Why Manifolds Work

Discriminating Features and the Availability Heuristic

S.No List of discriminating features Type of feature 18 is an insect Anatomical (visible)
1 has a large brain Anatomical (visible) 19 is scaly Anatomical (visible)
2 has 6 legs Anatomical (visible) 20 is furry Anatomical (visible)
3 has a nose Anatomical (visible) 21 has flippers Anatomical (visible)
4 has paws Anatomical (visible) 22 is colorful Anatomical (visible)
5 has antennae Anatomical (visible) 23 is a canine Anatomical (visible)
6 is long Anatomical (visible) 23] is strong Behavioural

7 is large Anatomical (visible) 25 howls Behavioural

8 has tusks Anatomical (visible) 26 travels in groups Behavioural

9 is slender Anatomical (visible) 27 is dangerous Behavioural

10 has horns Anatomical (visible) 28 digs holes Behavioural

11 has hooves Anatomical (visible) 29 eats grass Eating habits

12 is poisonous Anatomical 30 eats leaves Eating habits

13 is soft Anatomical (visible) 31 eats bugs Eating habits

14 is black Anatomical (visible) 32 eats fish Eating habits 17
— . 1. . 1 . o1~ — . 11 .




Why Manifolds Work

Discriminating Features and the Availability Heuristic

Fraction of total All features Discriminating features
Anatomical 0.57 0.64
Visible anatomical (as |0.83 0.96

fraction of anatomical)

Behavioural 0.24 0.13
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Tying it all together

Manifolds, Typicality, Bayesian cognition, Form learning

Tradeoff : Generality of gist-extraction vs. Generality of graph grammars.
Model <- Parameters <- Hyperparameters <- Gist <- Features <- Data
Typicality not only in Learning, but in Inference

Modelling not only what we do right, but also what we do wrong
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On Inductive Learning
From ML, to MAP, to Full Bayesian Learning

Belief Update

MaXimum LikelihOOd: p(form?), p(form?),
S e :
p(form?), p(forms),
Mmax P(X/‘S) \ Model Priors
Maximum a posteriori:

max P(3/X) = max P(X/3).P(d)

Full Bayesian Learning:

mean P(X/3).P(9)



In Conclusion

“Indeed, the human mind appeared to suffer from a crippling need

to fabricate in the absence of concrete proof.”

- J.R. Ward

Thank You
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